A switching state-space transmission model for tracking epidemics and assessing interventions
Author
Abstract
Suggested Citation
DOI: 10.1016/j.csda.2024.107977
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Karamé, Frédéric, 2018.
"A new particle filtering approach to estimate stochastic volatility models with Markov-switching,"
Econometrics and Statistics, Elsevier, vol. 8(C), pages 204-230.
- Frédéric Karamé, 2018. "A new particle filtering approach to estimate stochastic volatility models with Markov-switching," Post-Print hal-02296093, HAL.
- Kenrie P. Y. Hui & John C. W. Ho & Man-chun Cheung & Ka-chun Ng & Rachel H. H. Ching & Ka-ling Lai & Tonia Tong Kam & Haogao Gu & Ko-Yung Sit & Michael K. Y. Hsin & Timmy W. K. Au & Leo L. M. Poon & M, 2022. "SARS-CoV-2 Omicron variant replication in human bronchus and lung ex vivo," Nature, Nature, vol. 603(7902), pages 715-720, March.
- Kim, Chang-Jin, 1994.
"Dynamic linear models with Markov-switching,"
Journal of Econometrics, Elsevier, vol. 60(1-2), pages 1-22.
- Kim, C-J., 1991. "Dynamic Linear Models with Markov-Switching," Papers 91-8, York (Canada) - Department of Economics.
- Vanja Dukic & Hedibert F. Lopes & Nicholas G. Polson, 2012. "Tracking Epidemics With Google Flu Trends Data and a State-Space SEIR Model," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 107(500), pages 1410-1426, December.
- Christophe Andrieu & Arnaud Doucet & Roman Holenstein, 2010. "Particle Markov chain Monte Carlo methods," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 72(3), pages 269-342, June.
- Hamilton, James D, 1989. "A New Approach to the Economic Analysis of Nonstationary Time Series and the Business Cycle," Econometrica, Econometric Society, vol. 57(2), pages 357-384, March.
- Degras, David & Ting, Chee-Ming & Ombao, Hernando, 2022. "Markov-switching state-space models with applications to neuroimaging," Computational Statistics & Data Analysis, Elsevier, vol. 174(C).
- David A Rasmussen & Oliver Ratmann & Katia Koelle, 2011. "Inference for Nonlinear Epidemiological Models Using Genealogies and Time Series," PLOS Computational Biology, Public Library of Science, vol. 7(8), pages 1-11, August.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Kim, Jaeho, 2015. "Bayesian Inference in a Non-linear/Non-Gaussian Switching State Space Model: Regime-dependent Leverage Effect in the U.S. Stock Market," MPRA Paper 67153, University Library of Munich, Germany.
- Seuk Wai Phoong & Seuk Yen Phoong & Shi Ling Khek, 2022. "Systematic Literature Review With Bibliometric Analysis on Markov Switching Model: Methods and Applications," SAGE Open, , vol. 12(2), pages 21582440221, April.
- Wan Yang & Alicia Karspeck & Jeffrey Shaman, 2014. "Comparison of Filtering Methods for the Modeling and Retrospective Forecasting of Influenza Epidemics," PLOS Computational Biology, Public Library of Science, vol. 10(4), pages 1-15, April.
- Leopoldo Catania & Nima Nonejad, 2016. "Density Forecasts and the Leverage Effect: Some Evidence from Observation and Parameter-Driven Volatility Models," Papers 1605.00230, arXiv.org, revised Nov 2016.
- Carstensen, Kai & Heinrich, Markus & Reif, Magnus & Wolters, Maik H., 2020.
"Predicting ordinary and severe recessions with a three-state Markov-switching dynamic factor model,"
International Journal of Forecasting, Elsevier, vol. 36(3), pages 829-850.
- Heinrich, Markus & Carstensen, Kai & Reif, Magnus & Wolters, Maik, 2017. "Predicting Ordinary and Severe Recessions with a Three-State Markov-Switching Dynamic Factor Model. An Application to the German Business Cycle," VfS Annual Conference 2017 (Vienna): Alternative Structures for Money and Banking 168206, Verein für Socialpolitik / German Economic Association.
- Kai Carstensen & Markus Heinrich & Magnus Reif & Maik H. Wolters, 2017. "Predicting Ordinary and Severe Recessions with a Three-State Markov-Switching Dynamic Factor Model. An Application to the German Business Cycle," CESifo Working Paper Series 6457, CESifo.
- Kai Carstensen & Markus Heinrich & Magnus Reif & Maik H. Wolters, 2019. "Predicting Ordinary and Severe Recessions with a Three-State Markov-Switching Dynamic Factor Model," Jena Economics Research Papers 2019-006, Friedrich-Schiller-University Jena.
- Perron, Pierre & Wada, Tatsuma, 2016.
"Measuring business cycles with structural breaks and outliers: Applications to international data,"
Research in Economics, Elsevier, vol. 70(2), pages 281-303.
- Tatsuma Wada & Pierre Perron, 2014. "Measuring Business Cycles with Structural Breaks and Outliers: Applications to International Data," Boston University - Department of Economics - Working Papers Series 2014-004, Boston University - Department of Economics.
- Pierre Perron & Tatsuma Wada, 2015. "Measuring Business Cycles with Structural Breaks and Outliers: Applications to International Data," Boston University - Department of Economics - Working Papers Series wp2015-016, Boston University - Department of Economics.
- Carol Alexander & Anca Dimitriu, 2003. "Equity Indexing: Conitegration and Stock Price Dispersion: A Regime Switiching Approach to market Efficiency," ICMA Centre Discussion Papers in Finance icma-dp2003-02, Henley Business School, University of Reading.
- David Bolder & Shudan Liu, 2007. "Examining Simple Joint Macroeconomic and Term-Structure Models: A Practitioner's Perspective," Staff Working Papers 07-49, Bank of Canada.
- Alain Monfort & Olivier Féron, 2012.
"Joint econometric modeling of spot electricity prices, forwards and options,"
Review of Derivatives Research, Springer, vol. 15(3), pages 217-256, October.
- Alain Monfort & Olivier Féron, 2011. "Joint Econometric Modeling of Spot Electricity Prices, Forwards and Options," Working Papers 2011-12, Center for Research in Economics and Statistics.
- Gary Koop & Dimitris Korobilis, 2012.
"Forecasting Inflation Using Dynamic Model Averaging,"
International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 53(3), pages 867-886, August.
- Gary Koop & Dimitris Korobilis, 2009. "Forecasting Inflation Using Dynamic Model Averaging," Working Paper series 34_09, Rimini Centre for Economic Analysis.
- Koop, Gary & Korobilis, Dimitris, 2011. "Forecasting Inflation Using Dynamic Model Averaging," SIRE Discussion Papers 2011-40, Scottish Institute for Research in Economics (SIRE).
- Koop, Gary & Korobilis, Dimitris, 2010. "Forecasting Inflation Using Dynamic Model Averaging," SIRE Discussion Papers 2010-113, Scottish Institute for Research in Economics (SIRE).
- Gary Koop & Dimitris Korobilis, 2011. "Forecasting Inflation Using Dynamic Model Averaging," Working Papers 1119, University of Strathclyde Business School, Department of Economics.
- Carol Alexander & Anca Dimitriu, 2005. "Indexing, cointegration and equity market regimes," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 10(3), pages 213-231.
- Marie Bessec, 2019.
"Revisiting the transitional dynamics of business cycle phases with mixed-frequency data,"
Econometric Reviews, Taylor & Francis Journals, vol. 38(7), pages 711-732, August.
- Marie Bessec, 2016. "Revisiting the transitional dynamics of business-cycle phases with mixed frequency data," Working Papers hal-01358595, HAL.
- Marie Bessec, 2019. "Revisiting the transitional dynamics of business-cycle phases with mixed-frequency data," Post-Print hal-02181552, HAL.
- Chauvet, Marcelle & Potter, Simon, 2001.
"Nonlinear Risk,"
Macroeconomic Dynamics, Cambridge University Press, vol. 5(4), pages 621-646, September.
- Marcelle Chauvet & Simon M. Potter, 1999. "Nonlinear risk," Staff Reports 61, Federal Reserve Bank of New York.
- Mehmet Pasaogullari & Simeon Tsonevy, 2011. "The term structure of inflation compensation in the nominal yield curve," Working Papers (Old Series) 1133, Federal Reserve Bank of Cleveland.
- Theobald, Thomas, 2013. "Markov Switching with Endogenous Number of Regimes and Leading Indicators in a Real-Time Business Cycle Forecast," VfS Annual Conference 2013 (Duesseldorf): Competition Policy and Regulation in a Global Economic Order 79911, Verein für Socialpolitik / German Economic Association.
- Carol Alexander & Anca Dimitriu, 2005. "Detecting Switching Strategies in Equity Hedge Funds," ICMA Centre Discussion Papers in Finance icma-dp2005-07, Henley Business School, University of Reading.
- Randolph & Xiao Qin & Tan Gee Kwang, 2004.
"Unit Root Tests with Markov-Switching,"
Econometric Society 2004 Australasian Meetings
145, Econometric Society.
- Xiao Qin & Gee Kwang Randolph Tan, 2005. "Unit Root Tests With Markov-Switching," Computing in Economics and Finance 2005 95, Society for Computational Economics.
- Dmitry Kulikov, 2012. "Testing for Rational Speculative Bubbles on the Estonian Stock Market," Research in Economics and Business: Central and Eastern Europe, Tallinn School of Economics and Business Administration, Tallinn University of Technology, vol. 4(1).
- Kahn, James A. & Rich, Robert W., 2007.
"Tracking the new economy: Using growth theory to detect changes in trend productivity,"
Journal of Monetary Economics, Elsevier, vol. 54(6), pages 1670-1701, September.
- James A. Kahn & Robert W. Rich, 2003. "Tracking the new economy: using growth theory to detect changes in trend productivity," Proceedings, Federal Reserve Bank of San Francisco, issue Nov.
- James A. Kahn & Robert W. Rich, 2003. "Tracking the new economy: using growth theory to detect changes in trend productivity," Staff Reports 159, Federal Reserve Bank of New York.
- Masaru Chiba, 2023. "Robust and efficient specification tests in Markov-switching autoregressive models," Statistical Inference for Stochastic Processes, Springer, vol. 26(1), pages 99-137, April.
More about this item
Keywords
Switching state-space model; SEIR model; Particle Markov Chain Monte Carlo algorithm; Intervention effectiveness; Disease dynamics; COVID-19;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:197:y:2024:i:c:s0167947324000616. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.