IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v157y2021ics0167947320302565.html
   My bibliography  Save this article

Sum of Kronecker products representation and its Cholesky factorization for spatial covariance matrices from large grids

Author

Listed:
  • Cao, Jian
  • Genton, Marc G.
  • Keyes, David E.
  • Turkiyyah, George M.

Abstract

The sum of Kronecker products (SKP) representation for spatial covariance matrices from gridded observations and a corresponding adaptive-cross-approximation-based framework for building the Kronecker factors are investigated. The time cost for constructing an n-dimensional covariance matrix is O(nk2) and the total memory footprint is O(nk), where k is the number of Kronecker factors. The memory footprint under the SKP representation is compared with that under the hierarchical representation and found to be one order of magnitude smaller. A Cholesky factorization algorithm under the SKP representation is proposed and shown to factorize a one-million dimensional covariance matrix in under 600 seconds on a standard scientific workstation. With the computed Cholesky factor, simulations of Gaussian random fields in one million dimensions can be achieved at a low cost for a wide range of spatial covariance functions.

Suggested Citation

  • Cao, Jian & Genton, Marc G. & Keyes, David E. & Turkiyyah, George M., 2021. "Sum of Kronecker products representation and its Cholesky factorization for spatial covariance matrices from large grids," Computational Statistics & Data Analysis, Elsevier, vol. 157(C).
  • Handle: RePEc:eee:csdana:v:157:y:2021:i:c:s0167947320302565
    DOI: 10.1016/j.csda.2020.107165
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167947320302565
    Download Restriction: Full text for ScienceDirect subscribers only.

    File URL: https://libkey.io/10.1016/j.csda.2020.107165?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Castruccio, Stefano & Genton, Marc G., 2018. "Principles for statistical inference on big spatio-temporal data from climate models," Statistics & Probability Letters, Elsevier, vol. 136(C), pages 92-96.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Daniel A. Griffith, 2022. "Selected Payback Statistical Contributions to Matrix/Linear Algebra: Some Counterflowing Conceptualizations," Stats, MDPI, vol. 5(4), pages 1-16, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Reid, Nancy, 2018. "Statistical science in the world of big data," Statistics & Probability Letters, Elsevier, vol. 136(C), pages 42-45.
    2. Edwards, Matthew & Castruccio, Stefano & Hammerling, Dorit, 2020. "Marginally parameterized spatio-temporal models and stepwise maximum likelihood estimation," Computational Statistics & Data Analysis, Elsevier, vol. 151(C).
    3. Huang Huang & Stefano Castruccio & Allison H. Baker & Marc G. Genton, 2023. "Saving Storage in Climate Ensembles: A Model-Based Stochastic Approach," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 28(2), pages 324-344, June.
    4. Ying C. MacNab, 2018. "Rejoinder on: Some recent work on multivariate Gaussian Markov random fields," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 27(3), pages 554-569, September.
    5. Marc G. Genton & Ying Sun, 2019. "Comments on: Data science, big data and statistics," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 28(2), pages 338-341, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:157:y:2021:i:c:s0167947320302565. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.