IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v145y2020ics0167947320300074.html
   My bibliography  Save this article

Vertex nomination: The canonical sampling and the extended spectral nomination schemes

Author

Listed:
  • Yoder, Jordan
  • Chen, Li
  • Pao, Henry
  • Bridgeford, Eric
  • Levin, Keith
  • Fishkind, Donniell E.
  • Priebe, Carey
  • Lyzinski, Vince

Abstract

Suppose that one particular block in a stochastic block model is of interest, but block labels are only observed for a few of the vertices in the network. Utilizing a graph realized from the model and the observed block labels, the vertex nomination task is to order the vertices with unobserved block labels into a ranked nomination list with the goal of having an abundance of interesting vertices near the top of the list. There are vertex nomination schemes in the literature, including the optimally precise canonical nomination scheme LC and the consistent spectral partitioning nomination scheme LP. While the canonical nomination scheme LC is provably optimally precise, it is computationally intractable, being impractical to implement even on modestly sized graphs.

Suggested Citation

  • Yoder, Jordan & Chen, Li & Pao, Henry & Bridgeford, Eric & Levin, Keith & Fishkind, Donniell E. & Priebe, Carey & Lyzinski, Vince, 2020. "Vertex nomination: The canonical sampling and the extended spectral nomination schemes," Computational Statistics & Data Analysis, Elsevier, vol. 145(C).
  • Handle: RePEc:eee:csdana:v:145:y:2020:i:c:s0167947320300074
    DOI: 10.1016/j.csda.2020.106916
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167947320300074
    Download Restriction: Full text for ScienceDirect subscribers only.

    File URL: https://libkey.io/10.1016/j.csda.2020.106916?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhu, Mu & Ghodsi, Ali, 2006. "Automatic dimensionality selection from the scree plot via the use of profile likelihood," Computational Statistics & Data Analysis, Elsevier, vol. 51(2), pages 918-930, November.
    2. Matthew F. Glasser & Timothy S. Coalson & Emma C. Robinson & Carl D. Hacker & John Harwell & Essa Yacoub & Kamil Ugurbil & Jesper Andersson & Christian F. Beckmann & Mark Jenkinson & Stephen M. Smith , 2016. "A multi-modal parcellation of human cerebral cortex," Nature, Nature, vol. 536(7615), pages 171-178, August.
    3. Daniel L. Sussman & Minh Tang & Donniell E. Fishkind & Carey E. Priebe, 2012. "A Consistent Adjacency Spectral Embedding for Stochastic Blockmodel Graphs," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 107(499), pages 1119-1128, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chung, Jaewon & Bridgeford, Eric & Arroyo, Jesus & Pedigo, Benjamin D. & Saad-Eldin, Ali & Gopalakrishnan, Vivek & Xiang, Liang & Priebe, Carey E. & Vogelstein, Joshua T., 2020. "Statistical Connectomics," OSF Preprints ek4n3, Center for Open Science.
    2. Patrick Rubin‐Delanchy & Joshua Cape & Minh Tang & Carey E. Priebe, 2022. "A statistical interpretation of spectral embedding: The generalised random dot product graph," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 84(4), pages 1446-1473, September.
    3. Vainora, J., 2024. "Latent Position-Based Modeling of Parameter Heterogeneity," Cambridge Working Papers in Economics 2455, Faculty of Economics, University of Cambridge.
    4. Shin Ji-Hyung & Infante-Rivard Claire & Graham Jinko & McNeney Brad, 2012. "Adjusting for Spurious Gene-by-Environment Interaction Using Case-Parent Triads," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 11(2), pages 1-23, January.
    5. Koen Jochmans, 2024. "Nonparametric identification and estimation of stochastic block models from many small networks," Post-Print hal-04672521, HAL.
    6. Leon D. Lotter & Amin Saberi & Justine Y. Hansen & Bratislav Misic & Casey Paquola & Gareth J. Barker & Arun L. W. Bokde & Sylvane Desrivières & Herta Flor & Antoine Grigis & Hugh Garavan & Penny Gowl, 2024. "Regional patterns of human cortex development correlate with underlying neurobiology," Nature Communications, Nature, vol. 15(1), pages 1-21, December.
    7. Haewon Nam & Chongwon Pae & Jinseok Eo & Maeng-Keun Oh & Hae-Jeong Park, 2021. "Inter-species cortical registration between macaques and humans using a functional network property under a spherical demons framework," PLOS ONE, Public Library of Science, vol. 16(10), pages 1-22, October.
    8. Arno Klein & Satrajit S Ghosh & Forrest S Bao & Joachim Giard & Yrjö Häme & Eliezer Stavsky & Noah Lee & Brian Rossa & Martin Reuter & Elias Chaibub Neto & Anisha Keshavan, 2017. "Mindboggling morphometry of human brains," PLOS Computational Biology, Public Library of Science, vol. 13(2), pages 1-40, February.
    9. De Caigny, Arno & Coussement, Kristof & De Bock, Koen W. & Lessmann, Stefan, 2020. "Incorporating textual information in customer churn prediction models based on a convolutional neural network," International Journal of Forecasting, Elsevier, vol. 36(4), pages 1563-1578.
    10. Ann Hillier & Ryan P Kelly & Terrie Klinger, 2016. "Narrative Style Influences Citation Frequency in Climate Change Science," PLOS ONE, Public Library of Science, vol. 11(12), pages 1-12, December.
    11. Hutchison, Paul D. & Daigle, Ronald J. & George, Benjamin, 2018. "Application of latent semantic analysis in AIS academic research," International Journal of Accounting Information Systems, Elsevier, vol. 31(C), pages 83-96.
    12. Manish Saggar & James M. Shine & Raphaël Liégeois & Nico U. F. Dosenbach & Damien Fair, 2022. "Precision dynamical mapping using topological data analysis reveals a hub-like transition state at rest," Nature Communications, Nature, vol. 13(1), pages 1-19, December.
    13. Casey Paquola & Reinder Vos De Wael & Konrad Wagstyl & Richard A I Bethlehem & Seok-Jun Hong & Jakob Seidlitz & Edward T Bullmore & Alan C Evans & Bratislav Misic & Daniel S Margulies & Jonathan Small, 2019. "Microstructural and functional gradients are increasingly dissociated in transmodal cortices," PLOS Biology, Public Library of Science, vol. 17(5), pages 1-28, May.
    14. Peter Zhukovsky & Earvin S. Tio & Gillian Coughlan & David A. Bennett & Yanling Wang & Timothy J. Hohman & Diego A. Pizzagalli & Benoit H. Mulsant & Aristotle N. Voineskos & Daniel Felsky, 2024. "Genetic influences on brain and cognitive health and their interactions with cardiovascular conditions and depression," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    15. Tingting Bo & Jie Li & Ganlu Hu & Ge Zhang & Wei Wang & Qian Lv & Shaoling Zhao & Junjie Ma & Meng Qin & Xiaohui Yao & Meiyun Wang & Guang-Zhong Wang & Zheng Wang, 2023. "Brain-wide and cell-specific transcriptomic insights into MRI-derived cortical morphology in macaque monkeys," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    16. Gustavo Deco & Diego Vidaurre & Morten L. Kringelbach, 2021. "Revisiting the global workspace orchestrating the hierarchical organization of the human brain," Nature Human Behaviour, Nature, vol. 5(4), pages 497-511, April.
    17. Sofie L. Valk & Ting Xu & Casey Paquola & Bo-yong Park & Richard A. I. Bethlehem & Reinder Vos de Wael & Jessica Royer & Shahrzad Kharabian Masouleh & Şeyma Bayrak & Peter Kochunov & B. T. Thomas Yeo , 2022. "Genetic and phylogenetic uncoupling of structure and function in human transmodal cortex," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    18. Natalie Weed & Trygve Bakken & Nile Graddis & Nathan Gouwens & Daniel Millman & Michael Hawrylycz & Jack Waters, 2019. "Identification of genetic markers for cortical areas using a Random Forest classification routine and the Allen Mouse Brain Atlas," PLOS ONE, Public Library of Science, vol. 14(9), pages 1-13, September.
    19. Stefanos Bennett & Mihai Cucuringu & Gesine Reinert, 2022. "Lead-lag detection and network clustering for multivariate time series with an application to the US equity market," Papers 2201.08283, arXiv.org.
    20. Zachariah M. Reagh & Charan Ranganath, 2023. "Flexible reuse of cortico-hippocampal representations during encoding and recall of naturalistic events," Nature Communications, Nature, vol. 14(1), pages 1-15, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:145:y:2020:i:c:s0167947320300074. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.