IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v129y2019icp79-92.html
   My bibliography  Save this article

Robust tests for gene–environment interaction in case-control and case-only designs

Author

Listed:
  • Zang, Yong
  • Fung, Wing Kam
  • Cao, Sha
  • Ng, Hon Keung Tony
  • Zhang, Chi

Abstract

The case-control and case-only designs are commonly used to detect the gene–environment (G–E) interaction. In principle, the tests based on these two designs require a pre-specified genetic model to achieve an expected power of detecting the G–E interaction. Unfortunately, for most complex diseases the underlying genetic models are unknown. It is well known that mis-specification of the genetic model can result in a substantial loss of power in the detection of the main genetic effect. However, limited effort has been dedicated to the study of G–E interaction. This issue has been investigated in this article with a conclusion that the genetic model mis-specification can not only undermine the power of detecting G–E interaction in both case-control and case-only designs but also distort the type I error rate in case-control design. To tackle this problem, a class of robust tests, namely MAX3, have been proposed for both the case-control and case-only designs. The proposed tests can well control the type I error rate and yield satisfactory power even when the genetic model is mis-specified. The asymptotic distribution and the p-value formula for MAX3 have also been derived. Comprehensive simulation studies and a real data application on the genome-wide association study (GWAS) have been conducted using these analytical tools and the results demonstrate desirable operating characteristics of the proposed robust tests.

Suggested Citation

  • Zang, Yong & Fung, Wing Kam & Cao, Sha & Ng, Hon Keung Tony & Zhang, Chi, 2019. "Robust tests for gene–environment interaction in case-control and case-only designs," Computational Statistics & Data Analysis, Elsevier, vol. 129(C), pages 79-92.
  • Handle: RePEc:eee:csdana:v:129:y:2019:i:c:p:79-92
    DOI: 10.1016/j.csda.2018.08.014
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S016794731830197X
    Download Restriction: Full text for ScienceDirect subscribers only.

    File URL: https://libkey.io/10.1016/j.csda.2018.08.014?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zang, Yong & Fung, Wing Kam & Zheng, Gang, 2010. "Simple Algorithms to Calculate Asymptotic Null Distributions of Robust Tests in Case-Control Genetic Association Studies in R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 33(i08).
    2. Zang, Yong & Fung, Wing Kam & Zheng, Gang, 2010. "Asymptotic powers for matched trend tests and robust matched trend tests in case-control genetic association studies," Computational Statistics & Data Analysis, Elsevier, vol. 54(1), pages 65-77, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chin Lin & Hsiang-Cheng Chen & Wen-Hui Fang & Chih-Chien Wang & Yi-Jen Peng & Herng-Sheng Lee & Hung Chang & Chi-Ming Chu & Guo-Shu Huang & Wei-Teing Chen & Yu-Jui Tsai & Hong-Ling Lin & Fu-Huang Lin , 2016. "Angiotensin-Converting Enzyme Insertion/Deletion Polymorphism and Susceptibility to Osteoarthritis of the Knee: A Case-Control Study and Meta-Analysis," PLOS ONE, Public Library of Science, vol. 11(9), pages 1-18, September.
    2. Chen, Zhongxue, 2013. "Association tests through combining p-values for case control genome-wide association studies," Statistics & Probability Letters, Elsevier, vol. 83(8), pages 1854-1862.
    3. Kozlitina Julia & Schucany William R., 2015. "A robust distribution-free test for genetic association studies of quantitative traits," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 14(5), pages 443-464, November.
    4. Langaas Mette & Bakke Øyvind, 2014. "Robust methods to detect disease-genotype association in genetic association studies: calculate p-values using exact conditional enumeration instead of simulated permutations or asymptotic approximati," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 13(6), pages 675-692, December.
    5. Qu Long, 2014. "Combining dependent F-tests for robust association of quantitative traits under genetic model uncertainty," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 13(2), pages 123-139, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:129:y:2019:i:c:p:79-92. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.