IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v121y2018icp57-70.html
   My bibliography  Save this article

Concordance correlation coefficients estimated by variance components for longitudinal normal and Poisson data

Author

Listed:
  • Tsai, Miao-Yu
  • Lin, Chao-Chun

Abstract

The concordance correlation coefficient (CCC) is widely used to assess agreement between two observers for continuous responses. Further, the CCC is extended for measuring agreement with discrete data. This paper proposes a variance components (VC) approach that allows dependency between repeated measurements over time to assess intra-agreement for each observer and inter- and total agreement among multiple observers simultaneously under extended three-way generalized linear mixed-effects models (GLMMs) for longitudinal normal and Poisson data. Furthermore, we propose a weight matrix to compare with existing weight matrices. Simulation studies are conducted to compare the performance of the VC, generalized estimating equations and U-statistics approaches with different weight matrices for repeated measurements from longitudinal normal and Poisson data. Two applications, of myopia twin and of corticospinal diffusion tensor tractography studies, are used for illustration. In conclusion, the VC approach with consideration of the correlation structure of longitudinal repeated measurements gives satisfactory results with small mean square errors and nominal 95% coverage rates for all sample sizes.

Suggested Citation

  • Tsai, Miao-Yu & Lin, Chao-Chun, 2018. "Concordance correlation coefficients estimated by variance components for longitudinal normal and Poisson data," Computational Statistics & Data Analysis, Elsevier, vol. 121(C), pages 57-70.
  • Handle: RePEc:eee:csdana:v:121:y:2018:i:c:p:57-70
    DOI: 10.1016/j.csda.2017.12.003
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S016794731730258X
    Download Restriction: Full text for ScienceDirect subscribers only.

    File URL: https://libkey.io/10.1016/j.csda.2017.12.003?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Huiman X. Barnhart & Michael Haber & Jingli Song, 2002. "Overall Concordance Correlation Coefficient for Evaluating Agreement Among Multiple Observers," Biometrics, The International Biometric Society, vol. 58(4), pages 1020-1027, December.
    2. Josep L. Carrasco & Lluís Jover, 2003. "Estimating the Generalized Concordance Correlation Coefficient through Variance Components," Biometrics, The International Biometric Society, vol. 59(4), pages 849-858, December.
    3. Huiman X. Barnhart & John M. Williamson, 2001. "Modeling Concordance Correlation via GEE to Evaluate Reproducibility," Biometrics, The International Biometric Society, vol. 57(3), pages 931-940, September.
    4. Josep L. Carrasco, 2010. "A Generalized Concordance Correlation Coefficient Based on the Variance Components Generalized Linear Mixed Models for Overdispersed Count Data," Biometrics, The International Biometric Society, vol. 66(3), pages 897-904, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tsai, Miao-Yu, 2015. "Comparison of concordance correlation coefficient via variance components, generalized estimating equations and weighted approaches with model selection," Computational Statistics & Data Analysis, Elsevier, vol. 82(C), pages 47-58.
    2. Helenowski Irene B & Vonesh Edward F & Demirtas Hakan & Rademaker Alfred W & Ananthanarayanan Vijayalakshmi & Gann Peter H & Jovanovic Borko D, 2011. "Defining Reproducibility Statistics as a Function of the Spatial Covariance Structures in Biomarker Studies," The International Journal of Biostatistics, De Gruyter, vol. 7(1), pages 1-21, January.
    3. Chen, Chia-Cheng & Barnhart, Huiman X., 2008. "Comparison of ICC and CCC for assessing agreement for data without and with replications," Computational Statistics & Data Analysis, Elsevier, vol. 53(2), pages 554-564, December.
    4. Gao, Jingjing & Pan, Yi & Haber, Michael, 2012. "Assessment of observer agreement for matched repeated binary measurements," Computational Statistics & Data Analysis, Elsevier, vol. 56(5), pages 1052-1060.
    5. Ying Guo & Amita K. Manatunga, 2007. "Nonparametric Estimation of the Concordance Correlation Coefficient under Univariate Censoring," Biometrics, The International Biometric Society, vol. 63(1), pages 164-172, March.
    6. Josep L. Carrasco, 2010. "A Generalized Concordance Correlation Coefficient Based on the Variance Components Generalized Linear Mixed Models for Overdispersed Count Data," Biometrics, The International Biometric Society, vol. 66(3), pages 897-904, September.
    7. Thiago de Paula Oliveira & John Hinde & Silvio Sandoval Zocchi, 2018. "Longitudinal Concordance Correlation Function Based on Variance Components: An Application in Fruit Color Analysis," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 23(2), pages 233-254, June.
    8. Balakrishnan, Narayanaswamy & Ristić, Miroslav M., 2016. "Multivariate families of gamma-generated distributions with finite or infinite support above or below the diagonal," Journal of Multivariate Analysis, Elsevier, vol. 143(C), pages 194-207.
    9. Jason Wittenberg, 2013. "How similar are they? rethinking electoral congruence," Quality & Quantity: International Journal of Methodology, Springer, vol. 47(3), pages 1687-1701, April.
    10. Geòrgia Escaramís & Josep L. Carrasco & Carlos Ascaso, 2008. "Detection of Significant Disease Risks Using a Spatial Conditional Autoregressive Model," Biometrics, The International Biometric Society, vol. 64(4), pages 1043-1053, December.
    11. Admassu N. Lamu, 2020. "Does linear equating improve prediction in mapping? Crosswalking MacNew onto EQ-5D-5L value sets," The European Journal of Health Economics, Springer;Deutsche Gesellschaft für Gesundheitsökonomie (DGGÖ), vol. 21(6), pages 903-915, August.
    12. John J. Chen & Guangxiang Zhang & Chen Ji & George F. Steinhardt, 2011. "Simple moment-based inferences of generalized concordance correlation," Journal of Applied Statistics, Taylor & Francis Journals, vol. 38(9), pages 1867-1882, October.
    13. Erkan Cer, 2019. "The Instruction of Writing Strategies: The Effect of the Metacognitive Strategy on the Writing Skills of Pupils in Secondary Education," SAGE Open, , vol. 9(2), pages 21582440198, April.
    14. Candelaria de la Merced Díaz‐González & Milagros de la Rosa‐Hormiga & Josefa M. Ramal‐López & Juan José González‐Henríquez & María Sandra Marrero‐Morales, 2018. "Factors which influence concordance among measurements obtained by different pulse oximeters currently used in some clinical situations," Journal of Clinical Nursing, John Wiley & Sons, vol. 27(3-4), pages 677-683, February.
    15. Li, Runze & Chow, Mosuk, 2005. "Evaluation of reproducibility for paired functional data," Journal of Multivariate Analysis, Elsevier, vol. 93(1), pages 81-101, March.
    16. Huiman X. Barnhart & Michael Haber & Jingli Song, 2002. "Overall Concordance Correlation Coefficient for Evaluating Agreement Among Multiple Observers," Biometrics, The International Biometric Society, vol. 58(4), pages 1020-1027, December.
    17. Dennis Mackin & Xenia Fave & Lifei Zhang & Jinzhong Yang & A Kyle Jones & Chaan S Ng & Laurence Court, 2017. "Harmonizing the pixel size in retrospective computed tomography radiomics studies," PLOS ONE, Public Library of Science, vol. 12(9), pages 1-17, September.
    18. N. Lu & T. Chen & P. Wu & D. Gunzler & H. Zhang & H. He & X.M. Tu, 2014. "Functional response models for intraclass correlation coefficients," Journal of Applied Statistics, Taylor & Francis Journals, vol. 41(11), pages 2539-2556, November.
    19. Yan Ma & Wan Tang & Changyong Feng & Xin M. Tu, 2008. "Inference for Kappas for Longitudinal Study Data: Applications to Sexual Health Research," Biometrics, The International Biometric Society, vol. 64(3), pages 781-789, September.
    20. Yan Ma & Wan Tang & Qin Yu & X. Tu, 2010. "Modeling Concordance Correlation Coefficient for Longitudinal Study Data," Psychometrika, Springer;The Psychometric Society, vol. 75(1), pages 99-119, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:121:y:2018:i:c:p:57-70. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.