IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v114y2017icp26-37.html
   My bibliography  Save this article

Weighted particle tempering

Author

Listed:
  • Carzolio, Marcos
  • Leman, Scotland

Abstract

The application of Bayesian methods often requires Metropolis–Hastings or related algorithms to sample from an intractable posterior distribution. In especially challenging cases, such as with strongly correlated parameters or multimodal posteriors, exotic forms of Metropolis–Hastings are preferred for generating samples within a reasonable time. These algorithms require nontrivial and often prohibitive tuning, with little or no performance guarantees. In light of this difficulty, a new, parallelizable algorithm called weighted particle tempering is introduced. Weighted particle tempering is easily tuned and suitable for a broad range of applications. The algorithm works by running multiple random walk Metropolis chains directed at a tempered version of the target distribution, weighting the iterates and resampling. The algorithm’s performance monotonically improves with more of these underlying chains, a feature that simplifies tuning. Through the use of simulation studies, weighted particle tempering is shown to outperform two similar methods: parallel tempering and parallel hierarchical sampling. In addition, two case studies are explored: breast cancer classification and graphical models for financial data.

Suggested Citation

  • Carzolio, Marcos & Leman, Scotland, 2017. "Weighted particle tempering," Computational Statistics & Data Analysis, Elsevier, vol. 114(C), pages 26-37.
  • Handle: RePEc:eee:csdana:v:114:y:2017:i:c:p:26-37
    DOI: 10.1016/j.csda.2017.04.005
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167947317300786
    Download Restriction: Full text for ScienceDirect subscribers only.

    File URL: https://libkey.io/10.1016/j.csda.2017.04.005?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Rigat, F. & Mira, A., 2012. "Parallel hierarchical sampling: A general-purpose interacting Markov chains Monte Carlo algorithm," Computational Statistics & Data Analysis, Elsevier, vol. 56(6), pages 1450-1467.
    2. Leman, Scotland C. & Chen, Yuguo & Lavine, Michael, 2009. "The Multiset Sampler," Journal of the American Statistical Association, American Statistical Association, vol. 104(487), pages 1029-1041.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Yuguo, 2012. "A theory for the multiset sampler," Statistics & Probability Letters, Elsevier, vol. 82(3), pages 473-477.
    2. Huang, Weihong & Chen, Yuguo, 2017. "The multiset EM algorithm," Statistics & Probability Letters, Elsevier, vol. 126(C), pages 41-48.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:114:y:2017:i:c:p:26-37. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.