IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v99y2017icp155-161.html
   My bibliography  Save this article

Lyapunov exponents and poles in a non Hermitian dynamics

Author

Listed:
  • Gomez, Ignacio S.

Abstract

By means of expressing volumes in phase space in terms of traces of quantum operators, a relationship between the poles of the scattering matrix and the Lyapunov exponents in a non Hermitian quantum dynamics, is presented. We illustrate the formalism by characterizing the behavior of the Gamow model whose dissipative decay time, measured by its decoherence time, is found to be inversely proportional to the Lyapunov exponents of the unstable periodic orbits. The results are in agreement with those obtained by means of the semiclassical periodic–orbit approach in quantum resonances theory but using a simpler mathematics.

Suggested Citation

  • Gomez, Ignacio S., 2017. "Lyapunov exponents and poles in a non Hermitian dynamics," Chaos, Solitons & Fractals, Elsevier, vol. 99(C), pages 155-161.
  • Handle: RePEc:eee:chsofr:v:99:y:2017:i:c:p:155-161
    DOI: 10.1016/j.chaos.2017.04.009
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077917301443
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2017.04.009?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Maximenko, Vladimir A. & Hramov, Alexander E. & Koronovskii, Alexey A. & Makarov, Vladimir V. & Postnov, Dmitry E. & Balanov, Alexander G., 2017. "Lyapunov analysis of the spatially discrete-continuous system dynamics," Chaos, Solitons & Fractals, Elsevier, vol. 104(C), pages 228-237.
    2. Gomez, Ignacio S., 2018. "KS–entropy and logarithmic time scale in quantum mixing systems," Chaos, Solitons & Fractals, Elsevier, vol. 106(C), pages 317-322.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:99:y:2017:i:c:p:155-161. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.