IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v96y2017icp17-22.html
   My bibliography  Save this article

Epidemic spreading over quenched networks with local behavioral response

Author

Listed:
  • Wu, Qingchu
  • Chen, Shufang
  • Zha, Lingling

Abstract

We discuss the impact of local information-based behavioral response on epidemic spreading in social networks. By using a pair quenched mean-field approach developed by Mata and Ferreira [Europhys. Lett. 103 (2013) 48003], we derive a dynamical model governing the epidemic spreading over a random network with a linear response function and density-dependent epidemic information. A deterministic relation between the epidemic threshold and the response parameter is derived according to a quasi-static approximation method. It is found that local behavioral response will induce the extinction of the disease via rasing the epidemic threshold. Additionally, the theoretical result is supported by stochastic simulations on an Erdo¨s–Rényi random network and a Baraba´si–Albert scale-free network. Simulations show that the pair quenched mean-field approach is more accurate than the classical quenched mean-field approach.

Suggested Citation

  • Wu, Qingchu & Chen, Shufang & Zha, Lingling, 2017. "Epidemic spreading over quenched networks with local behavioral response," Chaos, Solitons & Fractals, Elsevier, vol. 96(C), pages 17-22.
  • Handle: RePEc:eee:chsofr:v:96:y:2017:i:c:p:17-22
    DOI: 10.1016/j.chaos.2017.01.003
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077917300036
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2017.01.003?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Liu, Yang & Wei, Bo & Du, Yuxian & Xiao, Fuyuan & Deng, Yong, 2016. "Identifying influential spreaders by weight degree centrality in complex networks," Chaos, Solitons & Fractals, Elsevier, vol. 86(C), pages 1-7.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhu, Yu-Xiao & Cao, Yan-Yan & Chen, Ting & Qiu, Xiao-Yan & Wang, Wei & Hou, Rui, 2018. "Crossover phenomena in growth pattern of social contagions with restricted contact," Chaos, Solitons & Fractals, Elsevier, vol. 114(C), pages 408-414.
    2. Zhou, Rong & Wu, Qingchu, 2019. "Epidemic spreading dynamics on complex networks with adaptive social-support," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 525(C), pages 778-787.
    3. Xiaoyang Liu & Chao Liu & Xiaoping Zeng, 2017. "Online Social Network Emergency Public Event Information Propagation and Nonlinear Mathematical Modeling," Complexity, Hindawi, vol. 2017, pages 1-7, June.
    4. Wu, Qingchu & Zhou, Rong & Hadzibeganovic, Tarik, 2019. "Conditional quenched mean-field approach for recurrent-state epidemic dynamics in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 518(C), pages 71-79.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chun-Wei Chen & Neng-Tang Huang & Hsien-Sheng Hsiao, 2022. "The Construction and Application of E-Learning Curricula Evaluation Metrics for Competency-Based Teacher Professional Development," Sustainability, MDPI, vol. 14(14), pages 1-22, July.
    2. Tao, Li & Kong, Shengzhou & He, Langzhou & Zhang, Fan & Li, Xianghua & Jia, Tao & Han, Zhen, 2022. "A sequential-path tree-based centrality for identifying influential spreaders in temporal networks," Chaos, Solitons & Fractals, Elsevier, vol. 165(P1).
    3. Zhang, Tianrui & Yang, Lu-Xing & Yang, Xiaofan & Wu, Yingbo & Tang, Yuan Yan, 2017. "Dynamic malware containment under an epidemic model with alert," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 470(C), pages 249-260.
    4. Wang, Ze & Gao, Xiangyun & Tang, Renwu & Liu, Xueyong & Sun, Qingru & Chen, Zhihua, 2019. "Identifying influential nodes based on fluctuation conduction network model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 514(C), pages 355-369.
    5. Lv, Zhiwei & Zhao, Nan & Xiong, Fei & Chen, Nan, 2019. "A novel measure of identifying influential nodes in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 523(C), pages 488-497.
    6. Wang, Min & Li, Wanchun & Guo, Yuning & Peng, Xiaoyan & Li, Yingxiang, 2020. "Identifying influential spreaders in complex networks based on improved k-shell method," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 554(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:96:y:2017:i:c:p:17-22. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.