IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v95y2017icp140-147.html
   My bibliography  Save this article

On the Lipschitz condition in the fractal calculus

Author

Listed:
  • Golmankhaneh, Alireza K.
  • Tunc, Cemil

Abstract

In this paper, the existence and uniqueness theorems are proved for the linear and non-linear fractal differential equations. The fractal Lipschitz condition is given on the Fα-calculus which applies for the non-differentiable function in the sense of the standard calculus. More, the metric spaces associated with fractal sets and about functions with fractal supports are defined to build fractal Cauchy sequence. Furthermore, Picard iterative process in the Fα-calculus which have important role in the numerical and approximate solution of fractal differential equations is explored. We clarify the results using the illustrative examples.

Suggested Citation

  • Golmankhaneh, Alireza K. & Tunc, Cemil, 2017. "On the Lipschitz condition in the fractal calculus," Chaos, Solitons & Fractals, Elsevier, vol. 95(C), pages 140-147.
  • Handle: RePEc:eee:chsofr:v:95:y:2017:i:c:p:140-147
    DOI: 10.1016/j.chaos.2016.12.001
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S096007791630354X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2016.12.001?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Satin, Seema E. & Parvate, Abhay & Gangal, A.D., 2013. "Fokker–Planck equation on fractal curves," Chaos, Solitons & Fractals, Elsevier, vol. 52(C), pages 30-35.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Golmankhaneh, Alireza K. & Tunç, Cemil, 2019. "Sumudu transform in fractal calculus," Applied Mathematics and Computation, Elsevier, vol. 350(C), pages 386-401.
    2. Khan, Hasib & Ahmad, Farooq & Tunç, Osman & Idrees, Muhammad, 2022. "On fractal-fractional Covid-19 mathematical model," Chaos, Solitons & Fractals, Elsevier, vol. 157(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Khalili Golmankhaneh, Alireza & Ontiveros, Lilián Aurora Ochoa, 2023. "Fractal calculus approach to diffusion on fractal combs," Chaos, Solitons & Fractals, Elsevier, vol. 175(P1).
    2. Satin, Seema & Gangal, A.D., 2019. "Random walk and broad distributions on fractal curves," Chaos, Solitons & Fractals, Elsevier, vol. 127(C), pages 17-23.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:95:y:2017:i:c:p:140-147. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.