IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v91y2016icp452-460.html
   My bibliography  Save this article

Modelling and computing the peaks of carbon emission with balanced growth

Author

Listed:
  • Chang, Shuhua
  • Wang, Xinyu
  • Wang, Zheng

Abstract

In this paper, we assume that under the balanced and optimal economic growth path, the economic growth rate is equal to the consumption growth rate, from which we can obtain the ordinary differential equation governing the consumption level by solving an optimal control problem. Then, a novel numerical method, namely a so-called discontinuous Galerkin method, is applied to solve the ordinary differential equation. The error estimation and the superconvergence estimation of this method are also performed. The model’s mechanism, which makes our assumption coherent, is that once the energy intensity is given, the economic growth is determined, followed by the GDP, the energy demand and the emissions. By applying this model to China, we obtain the conclusion that under the balanced and optimal economic growth path the CO2 emission will reach its peak in 2030 in China, which is consistent with the U.S.-China Joint Announcement on Climate Change and with other previous scientific results.

Suggested Citation

  • Chang, Shuhua & Wang, Xinyu & Wang, Zheng, 2016. "Modelling and computing the peaks of carbon emission with balanced growth," Chaos, Solitons & Fractals, Elsevier, vol. 91(C), pages 452-460.
  • Handle: RePEc:eee:chsofr:v:91:y:2016:i:c:p:452-460
    DOI: 10.1016/j.chaos.2016.07.004
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077916302260
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2016.07.004?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Keke Huang & Tao Wang & Yuan Cheng & Xiaoping Zheng, 2015. "Effect of Heterogeneous Investments on the Evolution of Cooperation in Spatial Public Goods Game," PLOS ONE, Public Library of Science, vol. 10(3), pages 1-10, March.
    2. Shuhua Chang & Xinyu Wang & Zheng Wang, 2015. "Modeling and Computation of Transboundary Industrial Pollution with Emission Permits Trading by Stochastic Differential Game," PLOS ONE, Public Library of Science, vol. 10(9), pages 1-29, September.
    3. Cai, Wenjia & Wang, Can & Chen, Jining & Wang, Ke & Zhang, Ying & Lu, Xuedu, 2008. "Comparison of CO2 emission scenarios and mitigation opportunities in China's five sectors in 2020," Energy Policy, Elsevier, vol. 36(3), pages 1181-1194, March.
    4. Auffhammer, Maximilian & Carson, Richard T., 2008. "Forecasting the path of China's CO2 emissions using province-level information," Journal of Environmental Economics and Management, Elsevier, vol. 55(3), pages 229-247, May.
    5. Azevedo, Alcino & Paxson, Dean, 2014. "Developing real option game models," European Journal of Operational Research, Elsevier, vol. 237(3), pages 909-920.
    6. Cheng-Yi Xia & Xiao-Kun Meng & Zhen Wang, 2015. "Heterogeneous Coupling between Interdependent Lattices Promotes the Cooperation in the Prisoner’s Dilemma Game," PLOS ONE, Public Library of Science, vol. 10(6), pages 1-13, June.
    7. Chen, Wenying, 2005. "The costs of mitigating carbon emissions in China: findings from China MARKAL-MACRO modeling," Energy Policy, Elsevier, vol. 33(7), pages 885-896, May.
    8. Richard Schmalensee & Thomas M. Stoker & Ruth A. Judson, 1998. "World Carbon Dioxide Emissions: 1950-2050," The Review of Economics and Statistics, MIT Press, vol. 80(1), pages 15-27, February.
    9. Moon, Young-Seok & Sonn, Yang-Hoon, 1996. "Productive energy consumption and economic growth: An endogenous growth model and its empirical application," Resource and Energy Economics, Elsevier, vol. 18(2), pages 189-200, June.
    10. Huang, Keke & Zheng, Xiaoping & Su, Yunpeng, 2015. "Effect of heterogeneous sub-populations on the evolution of cooperation," Applied Mathematics and Computation, Elsevier, vol. 270(C), pages 681-687.
    11. Dinda, Soumyananda, 2004. "Environmental Kuznets Curve Hypothesis: A Survey," Ecological Economics, Elsevier, vol. 49(4), pages 431-455, August.
    12. Jannett Highfill & Michael McAsey, 1991. "An optimal control problem in economics," International Journal of Mathematics and Mathematical Sciences, Hindawi, vol. 14, pages 1-8, January.
    13. Moomaw, William R. & Unruh, Gregory C., 1997. "Are environmental Kuznets curves misleading us? The case of CO2 emissions," Environment and Development Economics, Cambridge University Press, vol. 2(4), pages 451-463, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jiang, Jingjing & Ye, Bin & Liu, Junguo, 2019. "Research on the peak of CO2 emissions in the developing world: Current progress and future prospect," Applied Energy, Elsevier, vol. 235(C), pages 186-203.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Atwi, Majed & Barberán, Ramón & Mur, Jesús & Angulo, Ana, 2018. "CO2 Kuznets Curve Revisited: From Cross-Sections to Panel Data Models," INVESTIGACIONES REGIONALES - Journal of REGIONAL RESEARCH, Asociación Española de Ciencia Regional, issue 40, pages 169-196.
    2. Hao, Yu & Wei, Yi-Ming, 2015. "When does the turning point in China's CO2 emissions occur? Results based on the Green Solow model," Environment and Development Economics, Cambridge University Press, vol. 20(6), pages 723-745, December.
    3. Balado-Naves, Roberto & Baños-Pino, José Francisco & Mayor, Matías, 2018. "Do countries influence neighbouring pollution? A spatial analysis of the EKC for CO2 emissions," Energy Policy, Elsevier, vol. 123(C), pages 266-279.
    4. Roxana Pincheira & Felipe Zuniga, 2021. "Environmental Kuznets curve bibliographic map: a systematic literature review," Accounting and Finance, Accounting and Finance Association of Australia and New Zealand, vol. 61(S1), pages 1931-1956, April.
    5. B. Venkatraja, 2021. "Does China exhibit any evidence of an Environmental Kuznets Curve? An ARDL bounds testing approach," Economic Thought journal, Bulgarian Academy of Sciences - Economic Research Institute, issue 1, pages 88-110,111-.
    6. He, Jie & Richard, Patrick, 2010. "Environmental Kuznets curve for CO2 in Canada," Ecological Economics, Elsevier, vol. 69(5), pages 1083-1093, March.
    7. Pascalau, Razvan & Qirjo, Dhimitri, 2017. "TTIP and the Environmental Kuznets Curve," MPRA Paper 80192, University Library of Munich, Germany.
    8. Zheng, Xinye & Yu, Yihua & Wang, Jing & Deng, Huihui, 2013. "Identifying the determinants and spatial nexus of provincial carbon intensity in China: A dynamic spatial panel approach," MPRA Paper 56088, University Library of Munich, Germany.
    9. Bölük, Gülden & Mert, Mehmet, 2014. "Fossil & renewable energy consumption, GHGs (greenhouse gases) and economic growth: Evidence from a panel of EU (European Union) countries," Energy, Elsevier, vol. 74(C), pages 439-446.
    10. Yu Hao & Shang Gao & Yunxia Guo & Zhiqiang Gai & Haitao Wu, 2021. "Measuring the nexus between economic development and environmental quality based on environmental Kuznets curve: a comparative study between China and Germany for the period of 2000–2017," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(11), pages 16848-16873, November.
    11. Aslanidis Nektarios, 2009. "Environmental Kuznets curves for carbon emissions: A critical survey," wp.comunite 0051, Department of Communication, University of Teramo.
    12. Yang, Guangfei & Sun, Tao & Wang, Jianliang & Li, Xianneng, 2015. "Modeling the nexus between carbon dioxide emissions and economic growth," Energy Policy, Elsevier, vol. 86(C), pages 104-117.
    13. Hao, Yu & Liu, Yiming & Weng, Jia-Hsi & Gao, Yixuan, 2016. "Does the Environmental Kuznets Curve for coal consumption in China exist? New evidence from spatial econometric analysis," Energy, Elsevier, vol. 114(C), pages 1214-1223.
    14. Zhang, Qianxue & Liao, Hua & Hao, Yu, 2018. "Does one path fit all? An empirical study on the relationship between energy consumption and economic development for individual Chinese provinces," Energy, Elsevier, vol. 150(C), pages 527-543.
    15. Jalil, Abdul & Mahmud, Syed F., 2009. "Environment Kuznets curve for CO2 emissions: A cointegration analysis for China," Energy Policy, Elsevier, vol. 37(12), pages 5167-5172, December.
    16. Balsalobre-Lorente, Daniel & Shahbaz, Muhammad & Roubaud, David & Farhani, Sahbi, 2018. "How economic growth, renewable electricity and natural resources contribute to CO2 emissions?," Energy Policy, Elsevier, vol. 113(C), pages 356-367.
    17. Brantley Liddle & George Messinis, 2018. "Revisiting carbon Kuznets curves with endogenous breaks modeling: evidence of decoupling and saturation (but few inverted-Us) for individual OECD countries," Empirical Economics, Springer, vol. 54(2), pages 783-798, March.
    18. Fernández-Amador, Octavio & Francois, Joseph F. & Oberdabernig, Doris A. & Tomberger, Patrick, 2017. "Carbon Dioxide Emissions and Economic Growth: An Assessment Based on Production and Consumption Emission Inventories," Ecological Economics, Elsevier, vol. 135(C), pages 269-279.
    19. Wang, Yiming & Zhang, Pei & Huang, Dake & Cai, Changda, 2014. "Convergence behavior of carbon dioxide emissions in China," Economic Modelling, Elsevier, vol. 43(C), pages 75-80.
    20. Deng, Zhenghong & Ma, Chunmiao & Mao, Xudong & Wang, Shenglan & Niu, Zhenxi & Gao, Li, 2017. "Historical payoff promotes cooperation in the prisoner's dilemma game," Chaos, Solitons & Fractals, Elsevier, vol. 104(C), pages 1-5.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:91:y:2016:i:c:p:452-460. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.