IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v90y2016icp118-126.html
   My bibliography  Save this article

Forecasting business cycle with chaotic time series based on neural network with weighted fuzzy membership functions

Author

Listed:
  • Chai, Soo H.
  • Lim, Joon S.

Abstract

This study presents a forecasting model of cyclical fluctuations of the economy based on the time delay coordinate embedding method. The model uses a neuro-fuzzy network called neural network with weighted fuzzy membership functions (NEWFM). The preprocessed time series of the leading composite index using the time delay coordinate embedding method are used as input data to the NEWFM to forecast the business cycle. A comparative study is conducted using other methods based on wavelet transform and Principal Component Analysis for the performance comparison. The forecasting results are tested using a linear regression analysis to compare the approximation of the input data against the target class, gross domestic product (GDP). The chaos based model captures nonlinear dynamics and interactions within the system, which other two models ignore. The test results demonstrated that chaos based method significantly improved the prediction capability, thereby demonstrating superior performance to the other methods.

Suggested Citation

  • Chai, Soo H. & Lim, Joon S., 2016. "Forecasting business cycle with chaotic time series based on neural network with weighted fuzzy membership functions," Chaos, Solitons & Fractals, Elsevier, vol. 90(C), pages 118-126.
  • Handle: RePEc:eee:chsofr:v:90:y:2016:i:c:p:118-126
    DOI: 10.1016/j.chaos.2016.03.037
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077916301242
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2016.03.037?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sharif Md. Raihan & Yi Wen & Bing Zeng, 2005. "Wavelet: a new tool for business cycle analysis," Working Papers 2005-050, Federal Reserve Bank of St. Louis.
    2. Soo Han Chai & Joon Shik Lim, 2007. "Economic Turning Point Forecasting Using The Fuzzy Neural Network and Non-Overlap Area Distribution Measurement Method," Korean Economic Review, Korean Economic Association, vol. 23, pages 111-130.
    3. Niu, Hongli & Wang, Jun, 2013. "Complex dynamic behaviors of oriented percolation-based financial time series and Hang Seng index," Chaos, Solitons & Fractals, Elsevier, vol. 52(C), pages 36-44.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Carbone, Anna & Jensen, Meiko & Sato, Aki-Hiro, 2016. "Challenges in data science: a complex systems perspective," Chaos, Solitons & Fractals, Elsevier, vol. 90(C), pages 1-7.
    2. Juan Laborda & Sonia Ruano & Ignacio Zamanillo, 2023. "Multi-Country and Multi-Horizon GDP Forecasting Using Temporal Fusion Transformers," Mathematics, MDPI, vol. 11(12), pages 1-26, June.
    3. Liu, Weiping & Wang, Chengzhu & Li, Yonggang & Liu, Yishun & Huang, Keke, 2021. "Ensemble forecasting for product futures prices using variational mode decomposition and artificial neural networks," Chaos, Solitons & Fractals, Elsevier, vol. 146(C).
    4. Ku, Seungmo & Lee, Changju & Chang, Woojin & Wook Song, Jae, 2020. "Fractal structure in the S&P500: A correlation-based threshold network approach," Chaos, Solitons & Fractals, Elsevier, vol. 137(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Anand, B. & Paul, Sunil & Ramachandran, M., 2014. "Volatility Spillover between Oil and Stock Market Returns," Indian Economic Review, Department of Economics, Delhi School of Economics, vol. 49(1), pages 37-56.
    2. Aguiar-Conraria, LuI´s & Joana Soares, Maria, 2011. "Business cycle synchronization and the Euro: A wavelet analysis," Journal of Macroeconomics, Elsevier, vol. 33(3), pages 477-489, September.
    3. Rua, António & Nunes, Luis C., 2012. "A wavelet-based assessment of market risk: The emerging markets case," The Quarterly Review of Economics and Finance, Elsevier, vol. 52(1), pages 84-92.
    4. Zhou, Liangqiang & Liu, Shanshan & Chen, Fangqi, 2017. "Subharmonic bifurcations and chaotic motions for a class of inverted pendulum system," Chaos, Solitons & Fractals, Elsevier, vol. 99(C), pages 270-277.
    5. Hua, Jia-Chen & Roy, Sukesh & McCauley, Joseph L. & Gunaratne, Gemunu H., 2016. "Using dynamic mode decomposition to extract cyclic behavior in the stock market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 448(C), pages 172-180.
    6. Qing Pei & David D Zhang & Guodong Li & Harry F Lee, 2015. "Climate Change and the Macroeconomic Structure in Pre-Industrial Europe: New Evidence from Wavelet Analysis," PLOS ONE, Public Library of Science, vol. 10(6), pages 1-17, June.
    7. Fang, Wen & Ke, Jinchuan & Wang, Jun & Feng, Ling, 2016. "Linking market interaction intensity of 3D Ising type financial model with market volatility," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 461(C), pages 531-542.
    8. Bilgili, Faik, 2015. "Business cycle co-movements between renewables consumption and industrial production: A continuous wavelet coherence approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 325-332.
    9. Andrieș, Alin Marius & Ihnatov, Iulian & Tiwari, Aviral Kumar, 2014. "Analyzing time–frequency relationship between interest rate, stock price and exchange rate through continuous wavelet," Economic Modelling, Elsevier, vol. 41(C), pages 227-238.
    10. Tonn, Victor Lux & Li, H.C. & McCarthy, Joseph, 2010. "Wavelet domain correlation between the futures prices of natural gas and oil," The Quarterly Review of Economics and Finance, Elsevier, vol. 50(4), pages 408-414, November.
    11. Aviral Kumar Tiwari & Emmanuel Joel Aikins Abakah & Luis A. Gil-Alana & Moses Kenneth Abakah, 2021. "Inflation Co-Movement Dynamics: A Cross-Country Investigation Using a Continuous Wavelet Approach," JRFM, MDPI, vol. 14(12), pages 1-43, December.
    12. Abid, Fathi & Kaffel, Bilel, 2018. "Time–frequency wavelet analysis of the interrelationship between the global macro assets and the fear indexes," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 490(C), pages 1028-1045.
    13. Saeed, Asif & Chaudhry, Sajid M. & Arif, Ahmed & Ahmed, Rizwan, 2023. "Spillover of energy commodities and inflation in G7 plus Chinese economies," Energy Economics, Elsevier, vol. 127(PA).
    14. Tiwari, Aviral Kumar, 2013. "Oil prices and the macroeconomy reconsideration for Germany: Using continuous wavelet," Economic Modelling, Elsevier, vol. 30(C), pages 636-642.
    15. Aviral Kumar Tiwari, 2015. "Oil Price and Exchange Rate in Malaysia: A Time-Frequency Analysis," Asian Economic and Financial Review, Asian Economic and Social Society, vol. 5(4), pages 661-670, April.
    16. Lahmiri, Salim & Bekiros, Stelios, 2018. "Chaos, randomness and multi-fractality in Bitcoin market," Chaos, Solitons & Fractals, Elsevier, vol. 106(C), pages 28-34.
    17. Cifter, Atilla & Yilmazer, Sait & Cifter, Elif, 2009. "Analysis of sectoral credit default cycle dependency with wavelet networks: Evidence from Turkey," Economic Modelling, Elsevier, vol. 26(6), pages 1382-1388, November.
    18. Xing, Yani & Wang, Jun, 2019. "Statistical volatility duration and complexity of financial dynamics on Sierpinski gasket lattice percolation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 513(C), pages 234-247.
    19. Wang, Yiduan & Zheng, Shenzhou & Zhang, Wei & Wang, Jun & Wang, Guochao, 2018. "Modeling and complexity of stochastic interacting Lévy type financial price dynamics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 499(C), pages 498-511.
    20. Luís Francisco Aguiar-Conraria & Maria Joana Soares, 2007. "Using cross-wavelets to decompose the time-frequency relation between oil and the macroeconomy," NIPE Working Papers 16/2007, NIPE - Universidade do Minho.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:90:y:2016:i:c:p:118-126. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.