IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v85y2016icp110-119.html
   My bibliography  Save this article

Dynamics of a delayed business cycle model with general investment function

Author

Listed:
  • Riad, Driss
  • Hattaf, Khalid
  • Yousfi, Noura

Abstract

The aim of this paper is to study the dynamics of a delayed business cycle model with general investment function. The model describes the interaction of the gross product and capital stock. Furthermore, the delay represents the time between the decision of investment and implementation. Firstly, we show that the model is well posed by proving the global existence and boundedness of solutions. Secondly, we determine the economic equilibrium of the model. By analyzing the characteristic equation, we investigate the stability of the economic equilibrium and the local existence of Hopf bifurcation. Also, the direction of the Hopf bifurcation and the stability of the bifurcating periodic solutions are derived by applying the normal form method and center manifold theory. Moreover, the global existence of bifurcating periodic solutions is established by using the global Hopf bifurcation theory. Finally, our theoretical results are illustrated with some numerical simulations.

Suggested Citation

  • Riad, Driss & Hattaf, Khalid & Yousfi, Noura, 2016. "Dynamics of a delayed business cycle model with general investment function," Chaos, Solitons & Fractals, Elsevier, vol. 85(C), pages 110-119.
  • Handle: RePEc:eee:chsofr:v:85:y:2016:i:c:p:110-119
    DOI: 10.1016/j.chaos.2016.01.022
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077916300133
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2016.01.022?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wu, Xiaoqin P., 2011. "Codimension-2 bifurcations of the Kaldor model of business cycle," Chaos, Solitons & Fractals, Elsevier, vol. 44(1), pages 28-42.
    2. A. Krawiec & M. Szydlowski, 1999. "The Kaldor‐Kalecki business cycle model," Annals of Operations Research, Springer, vol. 89(0), pages 89-100, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wenjie Hu & Hua Zhao & Tao Dong, 2018. "Dynamic Analysis for a Kaldor–Kalecki Model of Business Cycle with Time Delay and Diffusion Effect," Complexity, Hindawi, vol. 2018, pages 1-11, January.
    2. Yingkang Xie & Zhen Wang & Bo Meng, 2019. "Stability and Bifurcation of a Delayed Time-Fractional Order Business Cycle Model with a General Liquidity Preference Function and Investment Function," Mathematics, MDPI, vol. 7(9), pages 1-10, September.
    3. Hattaf, Khalid & Riad, Driss & Yousfi, Noura, 2017. "A generalized business cycle model with delays in gross product and capital stock," Chaos, Solitons & Fractals, Elsevier, vol. 98(C), pages 31-37.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Eskandari, Z. & Avazzadeh, Z. & Khoshsiar Ghaziani, R., 2022. "Complex dynamics of a Kaldor model of business cycle with discrete-time," Chaos, Solitons & Fractals, Elsevier, vol. 157(C).
    2. Irina Bashkirtseva & Davide Radi & Lev Ryashko & Tatyana Ryazanova, 2018. "On the Stochastic Sensitivity and Noise-Induced Transitions of a Kaldor-Type Business Cycle Model," Computational Economics, Springer;Society for Computational Economics, vol. 51(3), pages 699-718, March.
    3. Irina Bashkirtseva & Alexander Pisarchik & Lev Ryashko & Tatyana Ryazanova, 2016. "Excitability And Complex Mixed-Mode Oscillations In Stochastic Business Cycle Model," Advances in Complex Systems (ACS), World Scientific Publishing Co. Pte. Ltd., vol. 19(01n02), pages 1-16, February.
    4. Gori, Luca & Guerrini, Luca & Sodini, Mauro, 2015. "A continuous time Cournot duopoly with delays," Chaos, Solitons & Fractals, Elsevier, vol. 79(C), pages 166-177.
    5. Wenjie Hu & Hua Zhao & Tao Dong, 2018. "Dynamic Analysis for a Kaldor–Kalecki Model of Business Cycle with Time Delay and Diffusion Effect," Complexity, Hindawi, vol. 2018, pages 1-11, January.
    6. Nikolaos Th. Chatzarakis, 2021. "Revisiting the role and consequences of Econophysics from a Marxian perspective," Bulletin of Political Economy, Bulletin of Political Economy, vol. 15(1), pages 45-68, June.
    7. Luca Guerrini & Adam Krawiec & Marek Szydlowski, 2020. "Bifurcations in economic growth model with distributed time delay transformed to ODE," Papers 2002.05016, arXiv.org.
    8. Wu, Xiaoqin P., 2011. "Codimension-2 bifurcations of the Kaldor model of business cycle," Chaos, Solitons & Fractals, Elsevier, vol. 44(1), pages 28-42.
    9. Szydłowski, Marek & Krawiec, Adam, 2005. "The stability problem in the Kaldor–Kalecki business cycle model," Chaos, Solitons & Fractals, Elsevier, vol. 25(2), pages 299-305.
    10. G. Rigatos & P. Siano & T. Ghosh, 2019. "A Nonlinear Optimal Control Approach to Stabilization of Business Cycles of Finance Agents," Computational Economics, Springer;Society for Computational Economics, vol. 53(3), pages 1111-1131, March.
    11. Yu, Jinchen & Peng, Mingshu, 2016. "Stability and bifurcation analysis for the Kaldor–Kalecki model with a discrete delay and a distributed delay," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 460(C), pages 66-75.
    12. Krawiec, Adam & Szydłowski, Marek, 2017. "Economic growth cycles driven by investment delay," Economic Modelling, Elsevier, vol. 67(C), pages 175-183.
    13. Lixiao Hao & Vasilios I. Manousiouthakis, 2021. "Sustainability over sets and the business cycle," SN Business & Economics, Springer, vol. 1(6), pages 1-26, June.
    14. Yüksel, Mustafa Kerem, 2011. "Capital dependent population growth induces cycles," Chaos, Solitons & Fractals, Elsevier, vol. 44(9), pages 759-763.
    15. Orlando, Giuseppe, 2016. "A discrete mathematical model for chaotic dynamics in economics: Kaldor’s model on business cycle," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 125(C), pages 83-98.
    16. Bashkirtseva, Irina & Ryazanova, Tatyana & Ryashko, Lev, 2015. "Analysis of dynamic regimes in stochastically forced Kaldor model," Chaos, Solitons & Fractals, Elsevier, vol. 79(C), pages 96-104.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:85:y:2016:i:c:p:110-119. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.