IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v76y2015icp32-39.html
   My bibliography  Save this article

Stability analysis of nonlinear ship-roll dynamics under wind and wave

Author

Listed:
  • Liu, Yachong
  • Hu, Ankang
  • Han, Fenglei
  • Lu, Yu

Abstract

Considering the nonlinear damping and restoring moments, a nonlinear ship rolling dynamical system is established in this paper. When only subjected to periodic wave excitation, the system is symmetric, whereas when subjected to joint action of periodic wave excitation and crosswind, the system degenerates into asymmetric. The simple zero points of Melnikov function in both two kinds of dynamical systems are computed by virtue of Gauss–Legendre integration. As a numerical verification of the threshold value, Lyapunov exponents are computed. In the end of the paper, the motion stability and the effect of crosswind on stability are analyzed by means of safe basin simulation and observation of its gradual erosion phenomenon. The study shows that crosswind results in symmetry breaking and further reduces the stability of the rolling system.

Suggested Citation

  • Liu, Yachong & Hu, Ankang & Han, Fenglei & Lu, Yu, 2015. "Stability analysis of nonlinear ship-roll dynamics under wind and wave," Chaos, Solitons & Fractals, Elsevier, vol. 76(C), pages 32-39.
  • Handle: RePEc:eee:chsofr:v:76:y:2015:i:c:p:32-39
    DOI: 10.1016/j.chaos.2015.03.011
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077915000922
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2015.03.011?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Feng, Jingjing & Zhang, Qichang & Wang, Wei, 2012. "Chaos of several typical asymmetric systems," Chaos, Solitons & Fractals, Elsevier, vol. 45(7), pages 950-958.
    2. Sofroniou, Anastasia & Bishop, Steven R., 2006. "Breaking the symmetry of the parametrically excited pendulum," Chaos, Solitons & Fractals, Elsevier, vol. 28(3), pages 673-681.
    3. Cao, Hongjun & Seoane, Jesús M. & Sanjuán, Miguel A.F., 2007. "Symmetry-breaking analysis for the general Helmholtz–Duffing oscillator," Chaos, Solitons & Fractals, Elsevier, vol. 34(2), pages 197-212.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ramadoss, Janarthanan & Kengne, Jacques & Tanekou, Sosthene Tsamene & Rajagopal, Karthikeyan & Kenmoe, Germaine Djuidje, 2022. "Reversal of period doubling, multistability and symmetry breaking aspects for a system composed of a van der pol oscillator coupled to a duffing oscillator," Chaos, Solitons & Fractals, Elsevier, vol. 159(C).
    2. Feng, Jingjing & Zhang, Qichang & Wang, Wei, 2012. "Chaos of several typical asymmetric systems," Chaos, Solitons & Fractals, Elsevier, vol. 45(7), pages 950-958.
    3. Attili, Basem S., 2009. "A direct method for the numerical computation of bifurcation points underlying symmetries," Chaos, Solitons & Fractals, Elsevier, vol. 40(3), pages 1545-1551.
    4. Zhou, Peipei & Cao, Hongjun, 2008. "The effect of symmetry-breaking on the parameterically excited pendulum," Chaos, Solitons & Fractals, Elsevier, vol. 38(2), pages 590-597.
    5. Bella, Giovanni, 2017. "Homoclinic bifurcation and the Belyakov degeneracy in a variant of the Romer model of endogenous growth," Chaos, Solitons & Fractals, Elsevier, vol. 104(C), pages 452-460.
    6. Anastasia Sofroniou & Steven Bishop, 2014. "Dynamics of a Parametrically Excited System with Two Forcing Terms," Mathematics, MDPI, vol. 2(3), pages 1-24, September.
    7. Wu, H. & Zhou, J. & Chen, M. & Xu, Q. & Bao, B., 2022. "DC-offset induced asymmetry in memristive diode-bridge-based Shinriki oscillator," Chaos, Solitons & Fractals, Elsevier, vol. 154(C).
    8. Ramadoss, Janarthanan & Kengne, Jacques & Kengnou Telem, Adélaïde Nicole & Rajagopal, Karthikeyan, 2022. "Broken symmetry and dynamics of a memristive diodes bridge-based Shinriki oscillator," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 588(C).
    9. Cao, Hongjun & Seoane, Jesús M. & Sanjuán, Miguel A.F., 2007. "Symmetry-breaking analysis for the general Helmholtz–Duffing oscillator," Chaos, Solitons & Fractals, Elsevier, vol. 34(2), pages 197-212.
    10. Girault, Jean-Marc, 2015. "Recurrence and symmetry of time series: Application to transition detection," Chaos, Solitons & Fractals, Elsevier, vol. 77(C), pages 11-28.
    11. Siewe, M. Siewe & Cao, Hongjun & Sanjuán, Miguel A.F., 2009. "On the occurrence of chaos in a parametrically driven extended Rayleigh oscillator with three-well potential," Chaos, Solitons & Fractals, Elsevier, vol. 41(2), pages 772-782.
    12. Siewe, M. Siewe & Cao, Hongjun & Sanjuán, Miguel A.F., 2009. "Effect of nonlinear dissipation on the basin boundaries of a driven two-well Rayleigh–Duffing oscillator," Chaos, Solitons & Fractals, Elsevier, vol. 39(3), pages 1092-1099.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:76:y:2015:i:c:p:32-39. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.