IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v75y2015icp204-211.html
   My bibliography  Save this article

Lie symmetries, Lagrangians and Hamiltonian framework of a class of nonlinear nonautonomous equations

Author

Listed:
  • Guha, Partha
  • Ghose-Choudhury, A.

Abstract

The method of Lie symmetries and the Jacobi Last Multiplier is used to study certain aspects of nonautonomous ordinary differential equations. Specifically we derive Lagrangians for a number of cases such as the Langmuir–Blodgett equation, the Langmuir–Bogulavski equation, the Lane–Emden–Fowler equation and the Thomas–Fermi equation by using the Jacobi Last Multiplier. By combining a knowledge of the last multiplier together with the Lie symmetries of the corresponding equations we explicitly construct first integrals for the Langmuir–Bogulavski equation q¨+53tq̇-t-5/3q-1/2=0 and the Lane–Emden–Fowler equation. These first integrals together with their corresponding Hamiltonains are then used to study time-dependent integrable systems. The use of the Poincaré–Cartan form allows us to find the conjugate Noetherian invariants associated with the invariant manifold.

Suggested Citation

  • Guha, Partha & Ghose-Choudhury, A., 2015. "Lie symmetries, Lagrangians and Hamiltonian framework of a class of nonlinear nonautonomous equations," Chaos, Solitons & Fractals, Elsevier, vol. 75(C), pages 204-211.
  • Handle: RePEc:eee:chsofr:v:75:y:2015:i:c:p:204-211
    DOI: 10.1016/j.chaos.2015.02.021
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S096007791500065X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2015.02.021?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bruzón, M.S. & Garrido, T.M. & de la Rosa, R., 2016. "Conservation laws and exact solutions of a Generalized Benjamin–Bona–Mahony–Burgers equation," Chaos, Solitons & Fractals, Elsevier, vol. 89(C), pages 578-583.
    2. Zhang, Yi, 2019. "Lie symmetry and invariants for a generalized Birkhoffian system on time scales," Chaos, Solitons & Fractals, Elsevier, vol. 128(C), pages 306-312.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:75:y:2015:i:c:p:204-211. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.