IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v69y2014icp285-293.html
   My bibliography  Save this article

Order to chaos transition studies in a DC glow discharge plasma by using recurrence quantification analysis

Author

Listed:
  • Mitra, Vramori
  • Sarma, Arun
  • Janaki, M.S.
  • Sekar Iyenger, A.N.
  • Sarma, Bornali
  • Marwan, Norbert
  • Kurths, Jurgen
  • Shaw, Pankaj Kumar
  • Saha, Debajyoti
  • Ghosh, Sabuj

Abstract

Recurrence quantification analysis (RQA) is used to study dynamical systems and to identify the underlying physics when a system exhibits a transition due to changes in some control parameter. The tendency of reoccurrence of different states after certain interval reflects and reveals the hidden patterns of a complex time series data. The present work involves the study of the floating potential fluctuations of a glow discharge plasma obtained by using a Langmuir probe. Determinism, entropy and Lmax are important measures of RQA that show an increasing and decreasing trend with variation in the values of discharge voltages and indicate an order-chaos transition in the dynamics of the fluctuations. Statistical analysis techniques represented by skewness and kurtosis are also supportive of a similar phenomenon occurring in the system.

Suggested Citation

  • Mitra, Vramori & Sarma, Arun & Janaki, M.S. & Sekar Iyenger, A.N. & Sarma, Bornali & Marwan, Norbert & Kurths, Jurgen & Shaw, Pankaj Kumar & Saha, Debajyoti & Ghosh, Sabuj, 2014. "Order to chaos transition studies in a DC glow discharge plasma by using recurrence quantification analysis," Chaos, Solitons & Fractals, Elsevier, vol. 69(C), pages 285-293.
  • Handle: RePEc:eee:chsofr:v:69:y:2014:i:c:p:285-293
    DOI: 10.1016/j.chaos.2014.10.005
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077914001763
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2014.10.005?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Saha, Debajyoti & Shaw, Pankaj Kumar & Ghosh, Sabuj & Janaki, M.S. & Iyengar, A.N.S., 2017. "Investigation and quantification of Phase coherence index for different types of forcing in DC glow discharge plasma," Chaos, Solitons & Fractals, Elsevier, vol. 104(C), pages 173-181.
    2. Mitra, Vramori & Solomon, Infant & Prakash, N. Hari & Sarma, Arun & Sarma, Bornali, 2017. "Complexity and onset of chaos control in a DC glow discharge magnetized plasma using all pass filter," Chaos, Solitons & Fractals, Elsevier, vol. 103(C), pages 613-621.
    3. Saha, Debajyoti & Shaw, Pankaj Kumar & Ghosh, Sabuj & Janaki, M.S. & Sekar Iyengar, A.N., 2018. "Quantification of scaling exponent with Crossover type phenomena for different types of forcing in DC glow discharge plasma," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 490(C), pages 300-310.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:69:y:2014:i:c:p:285-293. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.