IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v60y2014icp68-76.html
   My bibliography  Save this article

The brief time-reversibility of the local Lyapunov exponents for a small chaotic Hamiltonian system

Author

Listed:
  • Waldner, Franz
  • Hoover, William G.
  • Hoover, Carol G.

Abstract

We consider the local (instantaneous) Lyapunov spectrum for a four-dimensional Hamiltonian system. Its stable periodic motion can be reversed for long times. Its unstable chaotic motion, with two symmetric pairs of exponents, cannot. In the latter case reversal occurs for more than a thousand fourth-order Runge–Kutta time steps, followed by a transition to a new set of paired Lyapunov exponents, unrelated to those seen in the forward time direction. The relation of the observed chaotic dynamics to the Second Law of Thermodynamics is discussed.

Suggested Citation

  • Waldner, Franz & Hoover, William G. & Hoover, Carol G., 2014. "The brief time-reversibility of the local Lyapunov exponents for a small chaotic Hamiltonian system," Chaos, Solitons & Fractals, Elsevier, vol. 60(C), pages 68-76.
  • Handle: RePEc:eee:chsofr:v:60:y:2014:i:c:p:68-76
    DOI: 10.1016/j.chaos.2014.01.006
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077914000149
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2014.01.006?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Waldner, Franz & Klages, Rainer, 2012. "Symmetric Jacobian for local Lyapunov exponents and Lyapunov stability analysis revisited," Chaos, Solitons & Fractals, Elsevier, vol. 45(3), pages 325-340.
    2. Lebowitz, Joel L., 1999. "Microscopic origins of irreversible macroscopic behavior," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 263(1), pages 516-527.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lebed, Igor V., 2019. "The cause for emergence of irreversibility," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 524(C), pages 325-341.
    2. Yang, Yunpeng & Yang, Weixin & Chen, Hongmin & Li, Yin, 2020. "China’s energy whistleblowing and energy supervision policy: An evolutionary game perspective," Energy, Elsevier, vol. 213(C).
    3. Kalogeropoulos, Nikolaos, 2018. "Time irreversibility from symplectic non-squeezing," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 495(C), pages 202-210.
    4. Gang Li & Mengyu Lu & Sen Lai & Yonghong Li, 2023. "Research on Power Battery Recycling in the Green Closed-Loop Supply Chain: An Evolutionary Game-Theoretic Analysis," Sustainability, MDPI, vol. 15(13), pages 1-18, July.
    5. Gorban, Alexander, 2007. "Order–disorder separation: Geometric revision," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 374(1), pages 85-102.
    6. Creaco, Anthony J. & Kalogeropoulos, Nikolaos, 2019. "Irreversibility from staircases in symplectic embeddings," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 513(C), pages 497-509.
    7. Pérez-Cárdenas, Fernando C. & Resca, Lorenzo & Pegg, Ian L., 2016. "Microscopic reversibility and macroscopic irreversibility: A lattice gas model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 457(C), pages 82-92.
    8. Ali, S.A. & Cafaro, C. & Kim, D.-H. & Mancini, S., 2010. "The effect of microscopic correlations on the information geometric complexity of Gaussian statistical models," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(16), pages 3117-3127.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:60:y:2014:i:c:p:68-76. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.