IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v58y2014icp16-21.html
   My bibliography  Save this article

A novel method of S-box design based on chaotic map and composition method

Author

Listed:
  • Lambić, Dragan

Abstract

An efficient algorithm for obtaining random bijective S-boxes based on chaotic maps and composition method is presented. The proposed method is based on compositions of S-boxes from a fixed starting set. The sequence of the indices of starting S-boxes used is obtained by using chaotic maps. The results of performance test show that the S-box presented in this paper has good cryptographic properties. The advantages of the proposed method are the low complexity and the possibility to achieve large key space.

Suggested Citation

  • Lambić, Dragan, 2014. "A novel method of S-box design based on chaotic map and composition method," Chaos, Solitons & Fractals, Elsevier, vol. 58(C), pages 16-21.
  • Handle: RePEc:eee:chsofr:v:58:y:2014:i:c:p:16-21
    DOI: 10.1016/j.chaos.2013.11.001
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077913001975
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2013.11.001?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Tang, Guoping & Liao, Xiaofeng, 2005. "A method for designing dynamical S-boxes based on discretized chaotic map," Chaos, Solitons & Fractals, Elsevier, vol. 23(5), pages 1901-1909.
    2. Chen, Guo & Chen, Yong & Liao, Xiaofeng, 2007. "An extended method for obtaining S-boxes based on three-dimensional chaotic Baker maps," Chaos, Solitons & Fractals, Elsevier, vol. 31(3), pages 571-579.
    3. Yin, Ruming & Yuan, Jian & Wang, Jian & Shan, Xiuming & Wang, Xiqin, 2009. "Designing key-dependent chaotic S-box with larger key space," Chaos, Solitons & Fractals, Elsevier, vol. 42(4), pages 2582-2589.
    4. Chen, Guo, 2008. "A novel heuristic method for obtaining S-boxes," Chaos, Solitons & Fractals, Elsevier, vol. 36(4), pages 1028-1036.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhu, Shenli & Deng, Xiaoheng & Zhang, Wendong & Zhu, Congxu, 2023. "Secure image encryption scheme based on a new robust chaotic map and strong S-box," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 207(C), pages 322-346.
    2. Amal S. Alali & Rashad Ali & Muhammad Kamran Jamil & Javed Ali & Gulraiz, 2024. "Dynamic S-Box Construction Using Mordell Elliptic Curves over Galois Field and Its Applications in Image Encryption," Mathematics, MDPI, vol. 12(4), pages 1-15, February.
    3. Francisco Gonzalez & Ricardo Soto & Broderick Crawford, 2022. "Stochastic Fractal Search Algorithm Improved with Opposition-Based Learning for Solving the Substitution Box Design Problem," Mathematics, MDPI, vol. 10(13), pages 1-25, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yin, Ruming & Yuan, Jian & Wang, Jian & Shan, Xiuming & Wang, Xiqin, 2009. "Designing key-dependent chaotic S-box with larger key space," Chaos, Solitons & Fractals, Elsevier, vol. 42(4), pages 2582-2589.
    2. Muhammad Usama & Osama Rehman & Imran Memon & Safdar Rizvi, 2019. "An efficient construction of key-dependent substitution box based on chaotic sine map," International Journal of Distributed Sensor Networks, , vol. 15(12), pages 15501477198, December.
    3. Chen, Guo, 2008. "A novel heuristic method for obtaining S-boxes," Chaos, Solitons & Fractals, Elsevier, vol. 36(4), pages 1028-1036.
    4. Francisco Gonzalez & Ricardo Soto & Broderick Crawford, 2022. "Stochastic Fractal Search Algorithm Improved with Opposition-Based Learning for Solving the Substitution Box Design Problem," Mathematics, MDPI, vol. 10(13), pages 1-25, June.
    5. Mi, Bo & Liao, Xiaofeng & Chen, Yong, 2008. "A novel chaotic encryption scheme based on arithmetic coding," Chaos, Solitons & Fractals, Elsevier, vol. 38(5), pages 1523-1531.
    6. Umar Hayat & Ikram Ullah & Ghulam Murtaza & Naveed Ahmed Azam & Miguel D. Bustamante, 2022. "Enumerating Discrete Resonant Rossby/Drift Wave Triads and Their Application in Information Security," Mathematics, MDPI, vol. 10(23), pages 1-19, November.
    7. Arslan Shafique & Kashif Hesham Khan & Mohammad Mazyad Hazzazi & Ismail Bahkali & Zaid Bassfar & Mujeeb Ur Rehman, 2023. "Chaos and Cellular Automata-Based Substitution Box and Its Application in Cryptography," Mathematics, MDPI, vol. 11(10), pages 1-25, May.
    8. Yang, Huaqian & Liao, Xiaofeng & Wong, Kwok-wo & Zhang, Wei & Wei, Pengcheng, 2009. "A new cryptosystem based on chaotic map and operations algebraic," Chaos, Solitons & Fractals, Elsevier, vol. 40(5), pages 2520-2531.
    9. Çavuşoğlu, Ünal & Kaçar, Sezgin & Pehlivan, Ihsan & Zengin, Ahmet, 2017. "Secure image encryption algorithm design using a novel chaos based S-Box," Chaos, Solitons & Fractals, Elsevier, vol. 95(C), pages 92-101.
    10. Hu, Yue & Liao, Xiaofeng & Wong, Kwok-wo & Zhou, Qing, 2009. "A true random number generator based on mouse movement and chaotic cryptography," Chaos, Solitons & Fractals, Elsevier, vol. 40(5), pages 2286-2293.
    11. Yang, Huaqian & Liao, Xiaofeng & Wong, Kwok-wo & Zhang, Wei & Wei, Pengcheng, 2009. "A new block cipher based on chaotic map and group theory," Chaos, Solitons & Fractals, Elsevier, vol. 40(1), pages 50-59.
    12. Xiang, Tao & Wong, Kwok-Wo & Liao, Xiaofeng, 2009. "On the security of a novel key agreement protocol based on chaotic maps," Chaos, Solitons & Fractals, Elsevier, vol. 40(2), pages 672-675.
    13. Wei, Jun & Liao, Xiaofeng & Wong, Kwok-wo & Xiang, Tao, 2006. "A new chaotic cryptosystem," Chaos, Solitons & Fractals, Elsevier, vol. 30(5), pages 1143-1152.
    14. Zhao, Liang & Liao, Xiaofeng & Xiao, Di & Xiang, Tao & Zhou, Qing & Duan, Shukai, 2009. "True random number generation from mobile telephone photo based on chaotic cryptography," Chaos, Solitons & Fractals, Elsevier, vol. 42(3), pages 1692-1699.
    15. Zhou, Qing & Wong, Kwok-wo & Liao, Xiaofeng & Xiang, Tao & Hu, Yue, 2008. "Parallel image encryption algorithm based on discretized chaotic map," Chaos, Solitons & Fractals, Elsevier, vol. 38(4), pages 1081-1092.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:58:y:2014:i:c:p:16-21. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.