IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v51y2013icp64-74.html
   My bibliography  Save this article

Mental-disorder detection using chaos and nonlinear dynamical analysis of photoplethysmographic signals

Author

Listed:
  • Pham, Tuan D.
  • Thang, Truong Cong
  • Oyama-Higa, Mayumi
  • Sugiyama, Masahide

Abstract

Mental disorder can be defined as a psychological disturbance of thought or emotion. In particular, depression is a mental disease which can ultimately lead to death from suicide. If depression is identified, it can be treated with medication and psychotherapy. However, the diagnosis of depression is difficult and there are currently no any quick and reliable medical tests to detect if someone is depressed. This is because the exact cause of depression is still unknown given the belief that depression results in chemical brain changes, genetic disorder, stress, or the combination of these problems. Photoplethysmography has recently been realized as a non-invasive optical technique that can give new insights into the physiology and pathophysiology of the central and peripheral nervous systems. We present in this paper an automated mental-disorder detection approach in a general sense based on a novel synergy of chaos and nonlinear dynamical methods for the analysis of photoplethysmographic finger pulse waves of mental and control subjects. Such an approach can be applied for automated detection of depression as a special case. Because of the computational effectiveness of the studied methods and low cost of generation of the physiological signals, the proposed automated detection of mental illness is feasible for real-life applications including self-assessment, self-monitoring, and computerized health care.

Suggested Citation

  • Pham, Tuan D. & Thang, Truong Cong & Oyama-Higa, Mayumi & Sugiyama, Masahide, 2013. "Mental-disorder detection using chaos and nonlinear dynamical analysis of photoplethysmographic signals," Chaos, Solitons & Fractals, Elsevier, vol. 51(C), pages 64-74.
  • Handle: RePEc:eee:chsofr:v:51:y:2013:i:c:p:64-74
    DOI: 10.1016/j.chaos.2013.03.010
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077913000568
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2013.03.010?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Pham, Tuan D., 2012. "Regularity dimension of sequences and its application to phylogenetic tree reconstruction," Chaos, Solitons & Fractals, Elsevier, vol. 45(6), pages 879-887.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sviridova, Nina & Zhao, Tiejun & Aihara, Kazuyuki & Nakamura, Kazuyuki & Nakano, Akimasa, 2018. "Photoplethysmogram at green light: Where does chaos arise from?," Chaos, Solitons & Fractals, Elsevier, vol. 116(C), pages 157-165.
    2. Sviridova, Nina & Sakai, Kenshi, 2015. "Human photoplethysmogram: new insight into chaotic characteristics," Chaos, Solitons & Fractals, Elsevier, vol. 77(C), pages 53-63.
    3. Bazine, Hasnaa & Mabrouki, Mustapha, 2019. "Chaotic dynamics applied in time prediction of photovoltaic production," Renewable Energy, Elsevier, vol. 136(C), pages 1255-1265.
    4. Pham, Tuan D., 2014. "The butterfly effect in ER dynamics and ER-mitochondrial contacts," Chaos, Solitons & Fractals, Elsevier, vol. 65(C), pages 5-19.
    5. Liu, Jinhai & Su, Hanguang & Ma, Yanjuan & Wang, Gang & Wang, Yuan & Zhang, Kun, 2016. "Chaos characteristics and least squares support vector machines based online pipeline small leakages detection," Chaos, Solitons & Fractals, Elsevier, vol. 91(C), pages 656-669.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lahmiri, Salim & Tadj, Chakib & Gargour, Christian & Bekiros, Stelios, 2021. "Characterization of infant healthy and pathological cry signals in cepstrum domain based on approximate entropy and correlation dimension," Chaos, Solitons & Fractals, Elsevier, vol. 143(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:51:y:2013:i:c:p:64-74. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.