IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v47y2013icp27-41.html
   My bibliography  Save this article

Riemann theta functions periodic wave solutions and rational characteristics for the (1+1)-dimensional and (2+1)-dimensional Ito equation

Author

Listed:
  • Tian, Shou-Fu
  • Zhang, Hong-Qing

Abstract

In this paper, based on a multidimensional Riemann theta function, a lucid and straightforward way is presented to explicitly construct multiperiodic Riemann theta functions periodic waves solutions for nonlinear differential equation such as the (1+1)-dimensional and (2+1)-dimensional Ito equations. Among these periodic waves, the one-periodic waves are well-known cnoidal waves, their surface pattern is one-dimensional, and often they are used as one-dimensional models of periodic waves. The two-periodic waves are a direct generalization of one-periodic waves, their surface pattern is two dimensional that they have two independent spatial periods in two independent horizontal directions. A limiting procedure is presented to analyze asymptotic behavior of the multiperiodic periodic waves in details and the relations between the periodic wave solutions and soliton solutions are rigorously established.

Suggested Citation

  • Tian, Shou-Fu & Zhang, Hong-Qing, 2013. "Riemann theta functions periodic wave solutions and rational characteristics for the (1+1)-dimensional and (2+1)-dimensional Ito equation," Chaos, Solitons & Fractals, Elsevier, vol. 47(C), pages 27-41.
  • Handle: RePEc:eee:chsofr:v:47:y:2013:i:c:p:27-41
    DOI: 10.1016/j.chaos.2012.12.004
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077912002366
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2012.12.004?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Demiray, Seçil & Taşcan, Filiz, 2016. "Quasi-periodic solutions of (3+1) generalized BKP equation by using Riemann theta functions," Applied Mathematics and Computation, Elsevier, vol. 273(C), pages 131-141.
    2. Wang, Xiu-Bin & Tian, Shou-Fu & Xua, Mei-Juan & Zhang, Tian-Tian, 2016. "On integrability and quasi-periodic wave solutions to a (3+1)-dimensional generalized KdV-like model equation," Applied Mathematics and Computation, Elsevier, vol. 283(C), pages 216-233.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:47:y:2013:i:c:p:27-41. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.