IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v45y2012i9p1246-1254.html
   My bibliography  Save this article

q-Shock soliton evolution

Author

Listed:
  • Pashaev, Oktay K.
  • Nalci, Sengul

Abstract

By generating function based on Jackson’s q-exponential function and the standard exponential function, we introduce a new q-analogue of Hermite and Kampe-de Feriet polynomials. In contrast to q-Hermite polynomials with triple recurrence relations similar to [1], our polynomials satisfy multiple term recurrence relations, which are derived by the q-logarithmic function. It allows us to introduce the q-Heat equation with standard time evolution and the q-deformed space derivative. We find solution of this equation in terms of q-Kampe-de Feriet polynomials with arbitrary number of moving zeros, and solved the initial value problem in operator form. By q-analog of the Cole–Hopf transformation we obtain a new q-deformed Burgers type nonlinear equation with cubic nonlinearity. Regular everywhere, single and multiple q-shock soliton solutions and their time evolution are studied. A novel, self-similarity property of the q-shock solitons is found. Their evolution shows regular character free of any singularities. The results are extended to the linear time dependent q-Schrödinger equation and its nonlinear q-Madelung fluid type representation.

Suggested Citation

  • Pashaev, Oktay K. & Nalci, Sengul, 2012. "q-Shock soliton evolution," Chaos, Solitons & Fractals, Elsevier, vol. 45(9), pages 1246-1254.
  • Handle: RePEc:eee:chsofr:v:45:y:2012:i:9:p:1246-1254
    DOI: 10.1016/j.chaos.2012.06.013
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077912001397
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2012.06.013?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:45:y:2012:i:9:p:1246-1254. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.