IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v45y2012i7p998-1011.html
   My bibliography  Save this article

Periodic and chaotic synchronizations of two distinct dynamical systems under sinusoidal constraints

Author

Listed:
  • Min, Fuhong
  • Luo, Albert C.J.

Abstract

In this paper, periodic and chaotic synchronizations between two distinct dynamical systems under specific constraints are investigated from the theory of discontinuous dynamical systems. The analytical conditions for the sinusoidal synchronization of the pendulum and Duffing oscillator were obtained, and the invariant domain of sinusoidal synchronization is achieved. From analytical conditions, the control parameter map is developed. Numerical illustrations for partial and full sinusoidal synchronizations of chaotic and periodic motions of the controlled pendulum with the Duffing oscillator are carried out. This paper presents how to apply the theory of discontinuous dynamical systems to dynamical system synchronization with specific constraints. The function synchronization of two distinct dynamical systems with specific constraints should be identified only by G-functions. The significance of function synchronization of distinct dynamical systems is to make the synchronicity behaviors hidden, which is very useful for telecommunication synchronization and network security.

Suggested Citation

  • Min, Fuhong & Luo, Albert C.J., 2012. "Periodic and chaotic synchronizations of two distinct dynamical systems under sinusoidal constraints," Chaos, Solitons & Fractals, Elsevier, vol. 45(7), pages 998-1011.
  • Handle: RePEc:eee:chsofr:v:45:y:2012:i:7:p:998-1011
    DOI: 10.1016/j.chaos.2012.03.012
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077912000859
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2012.03.012?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Park, Ju H., 2005. "Stability criterion for synchronization of linearly coupled unified chaotic systems," Chaos, Solitons & Fractals, Elsevier, vol. 23(4), pages 1319-1325.
    2. N. Fujiwara & J. Kurths, 2009. "Spectral universality of phase synchronization in non-identical oscillator networks," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 69(1), pages 45-49, May.
    3. Luo, Albert C.J. & Min, Fuhong, 2011. "Synchronization dynamics of two different dynamical systems," Chaos, Solitons & Fractals, Elsevier, vol. 44(6), pages 362-380.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Ran & Li, Chunbiao & Kong, Sixiao & Jiang, Yicheng & Lei, Tengfei, 2022. "A 3D memristive chaotic system with conditional symmetry," Chaos, Solitons & Fractals, Elsevier, vol. 158(C).
    2. Liang, Bo & Hu, Chenyang & Tian, Zean & Wang, Qiao & Jian, Canling, 2023. "A 3D chaotic system with multi-transient behavior and its application in image encryption," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 616(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yu, Yongguang, 2008. "Adaptive synchronization of a unified chaotic system," Chaos, Solitons & Fractals, Elsevier, vol. 36(2), pages 329-333.
    2. Park, Ju H., 2005. "Chaos synchronization of a chaotic system via nonlinear control," Chaos, Solitons & Fractals, Elsevier, vol. 25(3), pages 579-584.
    3. Park, Ju H., 2006. "Synchronization of a class of chaotic dynamic systems with controller gain variations," Chaos, Solitons & Fractals, Elsevier, vol. 27(5), pages 1279-1284.
    4. Park, Ju H., 2006. "Synchronization of Genesio chaotic system via backstepping approach," Chaos, Solitons & Fractals, Elsevier, vol. 27(5), pages 1369-1375.
    5. Chen, Heng-Hui, 2009. "Chaos control and global synchronization of Liu chaotic systems using linear balanced feedback control," Chaos, Solitons & Fractals, Elsevier, vol. 40(1), pages 466-473.
    6. Yu, Yongguang & Li, Han-Xiong & Duan, Jian, 2009. "Chaos synchronization of a unified chaotic system via partial linearization," Chaos, Solitons & Fractals, Elsevier, vol. 41(1), pages 457-463.
    7. Tarai (Poria), Anindita & Poria, Swarup & Chatterjee, Prasanta, 2009. "Synchronization of generalised linearly bidirectionally coupled unified chaotic system," Chaos, Solitons & Fractals, Elsevier, vol. 40(2), pages 885-892.
    8. Park, Ju H., 2005. "GCS of a class of chaotic dynamic systems," Chaos, Solitons & Fractals, Elsevier, vol. 26(5), pages 1429-1435.
    9. Wu, Xiaofeng & Cai, Jianping & Wang, Muhong, 2008. "Global chaos synchronization of the parametrically excited Duffing oscillators by linear state error feedback control," Chaos, Solitons & Fractals, Elsevier, vol. 36(1), pages 121-128.
    10. Vincent, U.E. & Kareem, S.O. & Nana Nbendjo, B.R. & Njah, A.N., 2015. "Quasi-synchronization dynamics of coupled and driven plasma oscillators," Chaos, Solitons & Fractals, Elsevier, vol. 70(C), pages 85-94.
    11. Park, Ju H., 2005. "Adaptive synchronization of Rossler system with uncertain parameters," Chaos, Solitons & Fractals, Elsevier, vol. 25(2), pages 333-338.
    12. Balasis, Georgios & Daglis, Ioannis A. & Anastasiadis, Anastasios & Papadimitriou, Constantinos & Mandea, Mioara & Eftaxias, Konstantinos, 2011. "Universality in solar flare, magnetic storm and earthquake dynamics using Tsallis statistical mechanics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(2), pages 341-346.
    13. Min, Fuhong & Zhang, Wen & Ji, Ziyi & Zhang, Lei, 2021. "Switching dynamics of a non-autonomous FitzHugh-Nagumo circuit with piecewise-linear flux-controlled memristor," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    14. Chen, Heng-Hui & Lee, Ching-I & Yang, Pao-Hwa, 2009. "Adaptive synchronization of linearly coupled unified chaotic systems," Chaos, Solitons & Fractals, Elsevier, vol. 40(2), pages 598-606.
    15. Kakmeni, F.M. Moukam & Nguenang, J.P. & Kofané, T.C., 2006. "Chaos synchronization in bi-axial magnets modeled by Bloch equation," Chaos, Solitons & Fractals, Elsevier, vol. 30(3), pages 690-699.
    16. Chen, Heng-Hui & Chen, Chaio-Shiung & Lee, Ching-I, 2009. "Synchronization of linearly coupled unified chaotic systems based on linear balanced feedback scheme with constraints," Chaos, Solitons & Fractals, Elsevier, vol. 40(3), pages 1041-1049.
    17. Park, Ju H., 2005. "On synchronization of unified chaotic systems via nonlinear Control," Chaos, Solitons & Fractals, Elsevier, vol. 25(3), pages 699-704.
    18. Park, Ju H., 2006. "Chaos synchronization of nonlinear Bloch equations," Chaos, Solitons & Fractals, Elsevier, vol. 27(2), pages 357-361.
    19. Park, Ju H., 2005. "Adaptive synchronization of hyperchaotic Chen system with uncertain parameters," Chaos, Solitons & Fractals, Elsevier, vol. 26(3), pages 959-964.
    20. Luo, Albert C.J. & Min, Fuhong, 2011. "Synchronization dynamics of two different dynamical systems," Chaos, Solitons & Fractals, Elsevier, vol. 44(6), pages 362-380.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:45:y:2012:i:7:p:998-1011. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.