IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v44y2011i4p269-289.html
   My bibliography  Save this article

Limit cycle bifurcations of some Liénard systems with a cuspidal loop and a homoclinic loop

Author

Listed:
  • Yang, Junmin
  • Han, Maoan

Abstract

In this paper, we study the number of limit cycles of some polynomial Liénard systems with a cuspidal loop and a homoclinic loop, and obtain some new results on the lower bound of the maximal number of limit cycles for these systems.

Suggested Citation

  • Yang, Junmin & Han, Maoan, 2011. "Limit cycle bifurcations of some Liénard systems with a cuspidal loop and a homoclinic loop," Chaos, Solitons & Fractals, Elsevier, vol. 44(4), pages 269-289.
  • Handle: RePEc:eee:chsofr:v:44:y:2011:i:4:p:269-289
    DOI: 10.1016/j.chaos.2011.02.008
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077911000336
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2011.02.008?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Qin, Bo-Wei & Chung, Kwok-Wai & Algaba, Antonio & Rodríguez-Luis, Alejandro J., 2020. "Analytical approximation of cuspidal loops using a nonlinear time transformation method," Applied Mathematics and Computation, Elsevier, vol. 373(C).
    2. Wang, Jihua, 2016. "Bound the number of limit cycles bifurcating from center of polynomial Hamiltonian system via interval analysis," Chaos, Solitons & Fractals, Elsevier, vol. 87(C), pages 30-38.
    3. Sun, Xianbo & Su, Jing & Han, Maoan, 2013. "On the number of zeros of Abelian integral for some Liénard system of type (4,3)," Chaos, Solitons & Fractals, Elsevier, vol. 51(C), pages 1-12.
    4. Asheghi, R. & Bakhshalizadeh, A., 2015. "Limit cycles in a Liénard system with a cusp and a nilpotent saddle of order 7," Chaos, Solitons & Fractals, Elsevier, vol. 73(C), pages 120-128.
    5. Liang, Feng & Han, Maoan, 2012. "Limit cycles near generalized homoclinic and double homoclinic loops in piecewise smooth systems," Chaos, Solitons & Fractals, Elsevier, vol. 45(4), pages 454-464.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:44:y:2011:i:4:p:269-289. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.