IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v44y2011i12p1089-1099.html
   My bibliography  Save this article

Basic randomness of nature and ether-drift experiments

Author

Listed:
  • Consoli, M.
  • Pluchino, A.
  • Rapisarda, A.

Abstract

We re-consider the idea that quantum fluctuations might reflect the existence of an ‘objective randomness’, i.e. a basic property of the vacuum state which is independent of any experimental accuracy of the observations or limited knowledge of initial conditions. Besides being responsible for the observed quantum behavior, this might introduce a weak, residual form of ‘noise’ which is intrinsic to natural phenomena and could be important for the emergence of complexity at higher physical levels. By adopting Stochastic Electro Dynamics as a heuristic model, we are driven to a picture of the vacuum as a form of highly turbulent ether, which is deep-rooted into the basic foundational aspects of both quantum physics and relativity, and to search for experimental tests of this scenario. An analysis of the most precise ether-drift experiments, operating both at room temperature and in the cryogenic regime, shows that, at present, there is some ambiguity in the interpretation of the data. In fact the average amplitude of the signal has precisely the magnitude expected, in a ‘Lorentzian’ form of relativity, from an underlying stochastic ether and, as such, might not be a spurious instrumental effect. This puzzle, however, should be solved in a next future with the use of new cryogenically cooled optical resonators whose stability should improve by about two orders of magnitude. In these new experimental conditions, the persistence of the present amplitude would represent a clean evidence for the type of random vacuum we are envisaging.

Suggested Citation

  • Consoli, M. & Pluchino, A. & Rapisarda, A., 2011. "Basic randomness of nature and ether-drift experiments," Chaos, Solitons & Fractals, Elsevier, vol. 44(12), pages 1089-1099.
  • Handle: RePEc:eee:chsofr:v:44:y:2011:i:12:p:1089-1099
    DOI: 10.1016/j.chaos.2011.09.006
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077911001792
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2011.09.006?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liao, Shijun, 2013. "On the numerical simulation of propagation of micro-level inherent uncertainty for chaotic dynamic systems," Chaos, Solitons & Fractals, Elsevier, vol. 47(C), pages 1-12.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:44:y:2011:i:12:p:1089-1099. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.