IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v44y2011i10p902-913.html
   My bibliography  Save this article

Stabilization and tracking controller for a class of nonlinear discrete-time systems

Author

Listed:
  • Sharma, B.B.
  • Kar, I.N.

Abstract

In this paper, stabilization and tracking control problem for parametric strict feedback class of discrete time systems is addressed. Recursive design of control function based on contraction theory framework is proposed instead of traditional Lyapunov based method. Explicit structure of controller is derived for the addressed class of nonlinear discrete-time systems. Conditions for exponential stability of system states are derived in terms of controller parameters. At each stage of recursive procedure a specific structure of Jacobian matrix is ensured so as to satisfy conditions of stability. The closed loop dynamics in this case remains nonlinear in nature. The proposed algorithm establishes global stability results in quite a simple manner as it does not require formulation of error dynamics. Problem of stabilization and output tracking control in case of single link manipulator system with actuator dynamics is analyzed using the proposed strategy. The proposed results are further extended to stabilization of discrete time chaotic systems. Numerical simulations presented in the end show the effectiveness of the proposed approach.

Suggested Citation

  • Sharma, B.B. & Kar, I.N., 2011. "Stabilization and tracking controller for a class of nonlinear discrete-time systems," Chaos, Solitons & Fractals, Elsevier, vol. 44(10), pages 902-913.
  • Handle: RePEc:eee:chsofr:v:44:y:2011:i:10:p:902-913
    DOI: 10.1016/j.chaos.2011.07.009
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077911001378
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2011.07.009?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Li, Guo-Hui, 2006. "Generalized projective synchronization of two chaotic systems by using active control," Chaos, Solitons & Fractals, Elsevier, vol. 30(1), pages 77-82.
    2. Sharma, B.B. & Kar, I.N., 2009. "Parametric convergence and control of chaotic system using adaptive feedback linearization," Chaos, Solitons & Fractals, Elsevier, vol. 40(3), pages 1475-1483.
    3. Yassen, M.T., 2005. "Controlling chaos and synchronization for new chaotic system using linear feedback control," Chaos, Solitons & Fractals, Elsevier, vol. 26(3), pages 913-920.
    4. Yang, Yu & Ma, Xi-Kui & Zhang, Hao, 2006. "Synchronization and parameter identification of high-dimensional discrete chaotic systems via parametric adaptive control," Chaos, Solitons & Fractals, Elsevier, vol. 28(1), pages 244-251.
    5. Li, Guo-Hui, 2006. "Projective synchronization of chaotic system using backstepping control," Chaos, Solitons & Fractals, Elsevier, vol. 29(2), pages 490-494.
    6. Jayaram, A. & Tadi, M., 2006. "Synchronization of chaotic systems based on SDRE method," Chaos, Solitons & Fractals, Elsevier, vol. 28(3), pages 707-715.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shukla, Manoj Kumar & Sharma, B.B., 2017. "Stabilization of a class of fractional order chaotic systems via backstepping approach," Chaos, Solitons & Fractals, Elsevier, vol. 98(C), pages 56-62.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sun, Yeong-Jeu, 2009. "Exponential synchronization between two classes of chaotic systems," Chaos, Solitons & Fractals, Elsevier, vol. 39(5), pages 2363-2368.
    2. Elabbasy, E.M. & El-Dessoky, M.M., 2008. "Synchronization of van der Pol oscillator and Chen chaotic dynamical system," Chaos, Solitons & Fractals, Elsevier, vol. 36(5), pages 1425-1435.
    3. Sharma, B.B. & Kar, I.N., 2009. "Parametric convergence and control of chaotic system using adaptive feedback linearization," Chaos, Solitons & Fractals, Elsevier, vol. 40(3), pages 1475-1483.
    4. El-Dessoky, M.M., 2009. "Synchronization and anti-synchronization of a hyperchaotic Chen system," Chaos, Solitons & Fractals, Elsevier, vol. 39(4), pages 1790-1797.
    5. Yadav, Vijay K. & Shukla, Vijay K. & Das, Subir, 2019. "Difference synchronization among three chaotic systems with exponential term and its chaos control," Chaos, Solitons & Fractals, Elsevier, vol. 124(C), pages 36-51.
    6. Lee, Keum W. & Singh, Sahjendra N., 2007. "Robust control of chaos in Chua’s circuit based on internal model principle," Chaos, Solitons & Fractals, Elsevier, vol. 31(5), pages 1095-1107.
    7. Chang, Wei-Der, 2009. "PID control for chaotic synchronization using particle swarm optimization," Chaos, Solitons & Fractals, Elsevier, vol. 39(2), pages 910-917.
    8. Li, Jiayan & Cao, Jinde & Liu, Heng, 2022. "State observer-based fuzzy echo state network sliding mode control for uncertain strict-feedback chaotic systems without backstepping," Chaos, Solitons & Fractals, Elsevier, vol. 162(C).
    9. Grassi, Giuseppe, 2009. "Observer-based hyperchaos synchronization in cascaded discrete-time systems," Chaos, Solitons & Fractals, Elsevier, vol. 40(2), pages 1029-1039.
    10. Liu, Bin & Zhou, Yiming & Jiang, Min & Zhang, Zengke, 2009. "Synchronizing chaotic systems using control based on tridiagonal structure," Chaos, Solitons & Fractals, Elsevier, vol. 39(5), pages 2274-2281.
    11. Hu, Manfeng & Yang, Yongqing & Xu, Zhenyuan & Guo, Liuxiao, 2008. "Hybrid projective synchronization in a chaotic complex nonlinear system," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 79(3), pages 449-457.
    12. Yu, Yongguang, 2008. "Adaptive synchronization of a unified chaotic system," Chaos, Solitons & Fractals, Elsevier, vol. 36(2), pages 329-333.
    13. J. Humberto Pérez-Cruz & Pedro A. Tamayo-Meza & Maricela Figueroa & Ramón Silva-Ortigoza & Mario Ponce-Silva & R. Rivera-Blas & Mario Aldape-Pérez, 2019. "Exponential Synchronization of Chaotic Xian System Using Linear Feedback Control," Complexity, Hindawi, vol. 2019, pages 1-10, July.
    14. Cui, Yan & Liu, Suhua & Tang, Jiashi & Meng, Yimin, 2009. "Amplitude control of limit cycles in Langford system," Chaos, Solitons & Fractals, Elsevier, vol. 42(1), pages 335-340.
    15. Verichev, Nikolai N. & Verichev, Stanislav N. & Wiercigroch, Marian, 2009. "Asymptotic theory of chaotic synchronization for dissipative-coupled dynamical systems," Chaos, Solitons & Fractals, Elsevier, vol. 41(2), pages 752-763.
    16. Sun, Mei & Tian, Lixin & Jiang, Shumin & Xu, Jun, 2007. "Feedback control and adaptive control of the energy resource chaotic system," Chaos, Solitons & Fractals, Elsevier, vol. 32(5), pages 1725-1734.
    17. Tian, Lixin & Xu, Jun & Sun, Mei & Li, Xiuming, 2009. "On a new time-delayed feedback control of chaotic systems," Chaos, Solitons & Fractals, Elsevier, vol. 39(2), pages 831-839.
    18. Tutueva, Aleksandra & Moysis, Lazaros & Rybin, Vyacheslav & Zubarev, Alexander & Volos, Christos & Butusov, Denis, 2022. "Adaptive symmetry control in secure communication systems," Chaos, Solitons & Fractals, Elsevier, vol. 159(C).
    19. Chen, Heng-Hui & Lee, Ching-I & Yang, Pao-Hwa, 2009. "Adaptive synchronization of linearly coupled unified chaotic systems," Chaos, Solitons & Fractals, Elsevier, vol. 40(2), pages 598-606.
    20. Zhang, Ting & Wang, Jiang & Fei, Xiangyang & Deng, Bin, 2007. "Synchronization of coupled FitzHugh–Nagumo systems via MIMO feedback linearization control," Chaos, Solitons & Fractals, Elsevier, vol. 33(1), pages 194-202.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:44:y:2011:i:10:p:902-913. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.