IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v42y2009i5p3087-3099.html
   My bibliography  Save this article

Numerical Hopf bifurcation of Runge–Kutta methods for a class of delay differential equations

Author

Listed:
  • Wang, Qiubao
  • Li, Dongsong
  • Liu, M.Z.

Abstract

In this paper, we consider the discretization of parameter-dependent delay differential equation of the form

Suggested Citation

  • Wang, Qiubao & Li, Dongsong & Liu, M.Z., 2009. "Numerical Hopf bifurcation of Runge–Kutta methods for a class of delay differential equations," Chaos, Solitons & Fractals, Elsevier, vol. 42(5), pages 3087-3099.
  • Handle: RePEc:eee:chsofr:v:42:y:2009:i:5:p:3087-3099
    DOI: 10.1016/j.chaos.2009.04.008
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077909003932
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2009.04.008?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ding, Xiaohua & Fan, Dejun & Liu, Mingzhu, 2007. "Stability and bifurcation of a numerical discretization Mackey–Glass system," Chaos, Solitons & Fractals, Elsevier, vol. 34(2), pages 383-393.
    2. Liao, Xiaofeng & Li, Chuandong & Zhou, Shangbo, 2005. "Hopf bifurcation and chaos in macroeconomic models with policy lag," Chaos, Solitons & Fractals, Elsevier, vol. 25(1), pages 91-108.
    3. Liao, Xiaofeng & Chen, Guanrong, 2005. "Hopf bifurcation and chaos analysis of Chen’s system with distributed delays," Chaos, Solitons & Fractals, Elsevier, vol. 25(1), pages 197-220.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jiang, Heping & Song, Yongli, 2015. "Normal forms of non-resonance and weak resonance double Hopf bifurcation in the retarded functional differential equations and applications," Applied Mathematics and Computation, Elsevier, vol. 266(C), pages 1102-1126.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu, Xiaoming & Liao, Xiaofeng, 2009. "Necessary and sufficient conditions for Hopf bifurcation in tri-neuron equation with a delay," Chaos, Solitons & Fractals, Elsevier, vol. 40(1), pages 481-490.
    2. Liao, Xiaofeng & Ran, Jiouhong, 2007. "Hopf bifurcation in love dynamical models with nonlinear couples and time delays," Chaos, Solitons & Fractals, Elsevier, vol. 31(4), pages 853-865.
    3. Neamţu, Mihaela & Opriş, Dumitru & Chilaˇrescu, Constantin, 2007. "Hopf bifurcation in a dynamic IS–LM model with time delay," Chaos, Solitons & Fractals, Elsevier, vol. 34(2), pages 519-530.
    4. Wei Li & Baichuan Xiang & Rongxia Zhang & Guomin Li & Zhihao Wang & Bin Su & Tossou Mahugbe Eric, 2022. "Impact of Resource-Based Economic Transformation Policy on Sulfur Dioxide Emissions: A Case Study of Shanxi Province," Sustainability, MDPI, vol. 14(14), pages 1-22, July.
    5. G. Rigatos & P. Siano & M. Abbaszadeh & T. Ghosh, 2021. "Nonlinear optimal control of coupled time-delayed models of economic growth," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 44(1), pages 375-399, June.
    6. Sportelli, Mario & De Cesare, Luigi, 2019. "Fiscal policy delays and the classical growth cycle," Applied Mathematics and Computation, Elsevier, vol. 354(C), pages 9-31.
    7. Neamtu, Mihaela & Opris, Dumitru & Chilarescu, Constantin, 2005. "Hopf bifurcation in a dynamic IS-LM model with time delay," MPRA Paper 13270, University Library of Munich, Germany.
    8. Tamara Merkulova & Tatyana Bitkova & Kateryna Kononova, 2016. "Tax Factors of Sustainable Development: System Dynamics Approach towards Tax Evasion Analyses," RIVISTA DI STUDI SULLA SOSTENIBILITA', FrancoAngeli Editore, vol. 2016(1), pages 35-47.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:42:y:2009:i:5:p:3087-3099. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.