Statistics of the maximum for the tent map
Author
Abstract
Suggested Citation
DOI: 10.1016/j.chaos.2009.01.030
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Mackey, Michael C. & Tyran-Kamińska, Marta, 2008. "Central limit theorem behavior in the skew tent map," Chaos, Solitons & Fractals, Elsevier, vol. 38(3), pages 789-805.
- Freitas, Ana Cristina Moreira & Freitas, Jorge Milhazes, 2008. "On the link between dependence and independence in extreme value theory for dynamical systems," Statistics & Probability Letters, Elsevier, vol. 78(9), pages 1088-1093, July.
- Haiman, George, 2003. "Extreme values of the tent map process," Statistics & Probability Letters, Elsevier, vol. 65(4), pages 451-456, December.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- George Haiman, 2018. "Level Hitting Probabilities and Extremal Indexes for Some Particular Dynamical Systems," Methodology and Computing in Applied Probability, Springer, vol. 20(2), pages 553-562, June.
- Freitas, Ana Cristina Moreira & Freitas, Jorge Milhazes, 2008. "On the link between dependence and independence in extreme value theory for dynamical systems," Statistics & Probability Letters, Elsevier, vol. 78(9), pages 1088-1093, July.
- Freitas, Ana Cristina Moreira & Freitas, Jorge Milhazes & Todd, Mike, 2015. "Speed of convergence for laws of rare events and escape rates," Stochastic Processes and their Applications, Elsevier, vol. 125(4), pages 1653-1687.
- Lillo, Fabrizio & Livieri, Giulia & Marmi, Stefano & Solomko, Anton & Vaienti, Sandro, 2023. "Unimodal maps perturbed by heteroscedastic noise: an application to a financial systems," LSE Research Online Documents on Economics 120290, London School of Economics and Political Science, LSE Library.
- Freitas, Ana Cristina Moreira & Freitas, Jorge Milhazes & Todd, Mike & Vaienti, Sandro, 2016. "Rare events for the Manneville–Pomeau map," Stochastic Processes and their Applications, Elsevier, vol. 126(11), pages 3463-3479.
- Faranda, Davide & Freitas, Jorge Milhazes & Guiraud, Pierre & Vaienti, Sandro, 2015. "Sampling local properties of attractors via Extreme Value Theory," Chaos, Solitons & Fractals, Elsevier, vol. 74(C), pages 55-66.
- Angel, Omer & Matzavinos, Anastasios & Roitershtein, Alexander, 2019. "Limit theorem for the Robin Hood game," Statistics & Probability Letters, Elsevier, vol. 149(C), pages 9-15.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:42:y:2009:i:1:p:604-608. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.