IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v41y2009i5p2216-2219.html
   My bibliography  Save this article

Cryptographic pseudo-random sequence from the spatial chaotic map

Author

Listed:
  • Sun, Fuyan
  • Liu, Shutang

Abstract

A scheme for pseudo-random binary sequence generation based on the spatial chaotic map is proposed. In order to face the challenge of using the proposed PRBS in cryptography, the proposed PRBS is subjected to statistical tests which are the well-known FIPS-140-1 in the area of cryptography, and correlation properties of the proposed sequences are investigated. The proposed PRBS successfully passes all these tests. Results of statistical testing of the sequences are found encouraging. The results of statistical tests suggest strong candidature for cryptographic applications.

Suggested Citation

  • Sun, Fuyan & Liu, Shutang, 2009. "Cryptographic pseudo-random sequence from the spatial chaotic map," Chaos, Solitons & Fractals, Elsevier, vol. 41(5), pages 2216-2219.
  • Handle: RePEc:eee:chsofr:v:41:y:2009:i:5:p:2216-2219
    DOI: 10.1016/j.chaos.2008.08.032
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077908003974
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2008.08.032?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tutueva, Aleksandra V. & Nepomuceno, Erivelton G. & Karimov, Artur I. & Andreev, Valery S. & Butusov, Denis N., 2020. "Adaptive chaotic maps and their application to pseudo-random numbers generation," Chaos, Solitons & Fractals, Elsevier, vol. 133(C).
    2. Saha, Rahul & G, Geetha, 2017. "Symmetric random function generator (SRFG): A novel cryptographic primitive for designing fast and robust algorithms," Chaos, Solitons & Fractals, Elsevier, vol. 104(C), pages 371-377.
    3. Everett, Samuel, 2024. "On the use of dynamical systems in cryptography," Chaos, Solitons & Fractals, Elsevier, vol. 183(C).
    4. Dmitriy Kvitko & Vyacheslav Rybin & Oleg Bayazitov & Artur Karimov & Timur Karimov & Denis Butusov, 2024. "Chaotic Path-Planning Algorithm Based on Courbage–Nekorkin Artificial Neuron Model," Mathematics, MDPI, vol. 12(6), pages 1-20, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:41:y:2009:i:5:p:2216-2219. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.