IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v40y2009i3p1185-1189.html
   My bibliography  Save this article

On fuzzy pre-I-open sets and a decomposition of fuzzy I-continuity

Author

Listed:
  • Nasef, Arafa A.
  • Hatir, E.

Abstract

Recently, El-Naschie has shown that the notion of fuzzy topology may be relevant to quantum particle physics in connection with string theory and E-infinity space time theory. In this paper, we introduce and study the notion of fuzzy pre-I-open sets, which is properly placed between fuzzy openness and fuzzy pre-openness regardless the fuzzy topological ideal. Moreover, we give a decomposition of fuzzy I-continuity by proving that a function f:(X,τ,I)→(Y,σ) is fuzzy I-continuous if and only if it is fuzzy pre-I-continuous and fuzzy ∗-I-continuous.

Suggested Citation

  • Nasef, Arafa A. & Hatir, E., 2009. "On fuzzy pre-I-open sets and a decomposition of fuzzy I-continuity," Chaos, Solitons & Fractals, Elsevier, vol. 40(3), pages 1185-1189.
  • Handle: RePEc:eee:chsofr:v:40:y:2009:i:3:p:1185-1189
    DOI: 10.1016/j.chaos.2007.08.073
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077907007138
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2007.08.073?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. El Naschie, M.S., 2006. "Elementary prerequisites for E-infinity," Chaos, Solitons & Fractals, Elsevier, vol. 30(3), pages 579-605.
    2. El Naschie, M.S., 2006. "Topics in the mathematical physics of E-infinity theory," Chaos, Solitons & Fractals, Elsevier, vol. 30(3), pages 656-663.
    3. El Naschie, M. Saladin, 2006. "Advanced prerequisite for E-infinity theory," Chaos, Solitons & Fractals, Elsevier, vol. 30(3), pages 636-641.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yuksel, S. & Gursel Caylak, E. & Acikgoz, A., 2009. "On fuzzy α-I-continuous and fuzzy α-I-open functions," Chaos, Solitons & Fractals, Elsevier, vol. 41(4), pages 1691-1696.
    2. Keskin, Aynur, 2009. "On Fuzzy β-I-open sets and Fuzzy β-I-continuous functions," Chaos, Solitons & Fractals, Elsevier, vol. 42(3), pages 1372-1377.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. He, Ji-Huan & Wan, Yu-Qin & Xu, Lan, 2007. "Nano-effects, quantum-like properties in electrospun nanofibers," Chaos, Solitons & Fractals, Elsevier, vol. 33(1), pages 26-37.
    2. El Naschie, M.S., 2008. "Fuzzy knot theory interpretation of Yang–Mills instantons and Witten’s 5-Brane model," Chaos, Solitons & Fractals, Elsevier, vol. 38(5), pages 1349-1354.
    3. Liang, Y.S. & Su, W.Y., 2007. "The relationship between the fractal dimensions of a type of fractal functions and the order of their fractional calculus," Chaos, Solitons & Fractals, Elsevier, vol. 34(3), pages 682-692.
    4. El Naschie, M.S., 2006. "Fuzzy Dodecahedron topology and E-infinity spacetime as a model for quantum physics," Chaos, Solitons & Fractals, Elsevier, vol. 30(5), pages 1025-1033.
    5. Yuksel, S. & Gursel Caylak, E. & Acikgoz, A., 2009. "On fuzzy α-I-continuous and fuzzy α-I-open functions," Chaos, Solitons & Fractals, Elsevier, vol. 41(4), pages 1691-1696.
    6. Ekici, Erdal, 2009. "A note on almost β-continuous functions," Chaos, Solitons & Fractals, Elsevier, vol. 41(2), pages 1010-1013.
    7. Falcón, Sergio & Plaza, Ángel, 2007. "The k-Fibonacci sequence and the Pascal 2-triangle," Chaos, Solitons & Fractals, Elsevier, vol. 33(1), pages 38-49.
    8. El Naschie, M.S., 2008. "Exact non-perturbative derivation of gravity’s G¯4 fine structure constant, the mass of the Higgs and elementary black holes," Chaos, Solitons & Fractals, Elsevier, vol. 37(2), pages 346-359.
    9. Yao, K. & Liang, Y.S. & Zhang, F., 2009. "On the connection between the order of the fractional derivative and the Hausdorff dimension of a fractal function," Chaos, Solitons & Fractals, Elsevier, vol. 41(5), pages 2538-2545.
    10. El Naschie, M.S., 2008. "Deriving the largest expected number of elementary particles in the standard model from the maximal compact subgroup H of the exceptional Lie group E7(-5)," Chaos, Solitons & Fractals, Elsevier, vol. 38(4), pages 956-961.
    11. Ekici, Erdal, 2008. "Generalization of weakly clopen and strongly θ-b-continuous functions," Chaos, Solitons & Fractals, Elsevier, vol. 38(1), pages 79-88.
    12. Zahran, A.M. & Abbas, S.E. & Abd El-baki, S.A. & Saber, Y.M., 2009. "Decomposition of fuzzy continuity and fuzzy ideal continuity via fuzzy idealization," Chaos, Solitons & Fractals, Elsevier, vol. 42(5), pages 3064-3077.
    13. Yao, K. & Liang, Y.S. & Fang, J.X., 2008. "The fractal dimensions of graphs of the Weyl-Marchaud fractional derivative of the Weierstrass-type function," Chaos, Solitons & Fractals, Elsevier, vol. 35(1), pages 106-115.
    14. El Naschie, M.S., 2007. "Feigenbaum scenario for turbulence and Cantorian E-infinity theory of high energy particle physics," Chaos, Solitons & Fractals, Elsevier, vol. 32(3), pages 911-915.
    15. El Naschie, M.S., 2007. "On the universality class of all universality classes and E-infinity spacetime physics," Chaos, Solitons & Fractals, Elsevier, vol. 32(3), pages 927-936.
    16. El Naschie, M.S., 2009. "Arguments for the compactness and multiple connectivity of our cosmic spacetime," Chaos, Solitons & Fractals, Elsevier, vol. 41(5), pages 2787-2789.
    17. El Naschie, M.S., 2008. "Quarks confinement," Chaos, Solitons & Fractals, Elsevier, vol. 37(1), pages 6-8.
    18. Falcón, Sergio & Plaza, Ángel, 2009. "On k-Fibonacci sequences and polynomials and their derivatives," Chaos, Solitons & Fractals, Elsevier, vol. 39(3), pages 1005-1019.
    19. El Naschie, M.S., 2008. "The fundamental algebraic equations of the constants of nature," Chaos, Solitons & Fractals, Elsevier, vol. 35(2), pages 320-322.
    20. El Naschie, M.S., 2008. "Quarks confinement via Kaluza–Klein theory as a topological property of quantum classical spacetime phase transition," Chaos, Solitons & Fractals, Elsevier, vol. 35(5), pages 825-829.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:40:y:2009:i:3:p:1185-1189. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.