IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v39y2009i4p1856-1863.html
   My bibliography  Save this article

Sliding mode synchronization controller design with neural network for uncertain chaotic systems

Author

Listed:
  • Mou, Chen
  • Jiang, Chang-sheng
  • Bin, Jiang
  • Wu, Qing-xian

Abstract

A sliding mode synchronization controller is presented with RBF neural network for two chaotic systems in this paper. The compound disturbance of the synchronization error system consists of nonlinear uncertainties and exterior disturbances of chaotic systems. Based on RBF neural networks, a compound disturbance observer is proposed and the update law of parameters is given to monitor the compound disturbance. The synchronization controller is given based on the output of the compound disturbance observer. The designed controller can make the synchronization error convergent to zero and overcome the disruption of the uncertainty and the exterior disturbance of the system. Finally, an example is given to demonstrate the availability of the proposed synchronization control method.

Suggested Citation

  • Mou, Chen & Jiang, Chang-sheng & Bin, Jiang & Wu, Qing-xian, 2009. "Sliding mode synchronization controller design with neural network for uncertain chaotic systems," Chaos, Solitons & Fractals, Elsevier, vol. 39(4), pages 1856-1863.
  • Handle: RePEc:eee:chsofr:v:39:y:2009:i:4:p:1856-1863
    DOI: 10.1016/j.chaos.2007.06.113
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077907004286
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2007.06.113?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Guo, Pengteng & Shi, Qiqing & Jian, Zeng & Zhang, Jing & Ding, Qun & Yan, Wenhao, 2024. "An intelligent controller of homo-structured chaotic systems under noisy conditions and applications in image encryption," Chaos, Solitons & Fractals, Elsevier, vol. 180(C).
    2. Zhang, Qunjiao, 2014. "Robust synchronization of FitzHugh–Nagumo network with parameter disturbances by sliding mode control," Chaos, Solitons & Fractals, Elsevier, vol. 58(C), pages 22-26.
    3. Chen, Mou & Chen, Wen-hua, 2009. "Robust adaptive neural network synchronization controller design for a class of time delay uncertain chaotic systems," Chaos, Solitons & Fractals, Elsevier, vol. 41(5), pages 2716-2724.
    4. Yao, Qijia, 2021. "Neural adaptive learning synchronization of second-order uncertain chaotic systems with prescribed performance guarantees," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    5. Jin, Maolin & Chang, Pyung Hun, 2009. "Simple robust technique using time delay estimation for the control and synchronization of Lorenz systems," Chaos, Solitons & Fractals, Elsevier, vol. 41(5), pages 2672-2680.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:39:y:2009:i:4:p:1856-1863. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.