IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v39y2009i3p1100-1108.html
   My bibliography  Save this article

Multiple periodic solutions of a ratio-dependent predator–prey model

Author

Listed:
  • Xia, Yonghui
  • Han, Maoan

Abstract

A delayed ratio-dependent predator–prey model with non-monotone functional response is investigated in this paper. Some new and interesting sufficient conditions are obtained for the global existence of multiple positive periodic solutions of the ratio-dependent model. Our method is based on Mawhin’s coincidence degree and some estimation techniques for the a priori bounds of unknown solutions to the equation Lx=λNx. An example is represented to illustrate the feasibility of our main result.

Suggested Citation

  • Xia, Yonghui & Han, Maoan, 2009. "Multiple periodic solutions of a ratio-dependent predator–prey model," Chaos, Solitons & Fractals, Elsevier, vol. 39(3), pages 1100-1108.
  • Handle: RePEc:eee:chsofr:v:39:y:2009:i:3:p:1100-1108
    DOI: 10.1016/j.chaos.2007.04.028
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077907003372
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2007.04.028?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hai-Feng Huo & Wan-Tong Li, 2003. "Existence and global stability of positive periodic solutions of a discrete delay competition system," International Journal of Mathematics and Mathematical Sciences, Hindawi, vol. 2003, pages 1-13, January.
    2. Ma, Wen-Xiu & Maruno, Ken-ichi, 2004. "Complexiton solutions of the Toda lattice equation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 343(C), pages 219-237.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xu, Xi-Xiang, 2015. "A deformed reduced semi-discrete Kaup–Newell equation, the related integrable family and Darboux transformation," Applied Mathematics and Computation, Elsevier, vol. 251(C), pages 275-283.
    2. Ma, Wen-Xiu, 2005. "Complexiton solutions of the Korteweg–de Vries equation with self-consistent sources," Chaos, Solitons & Fractals, Elsevier, vol. 26(5), pages 1453-1458.
    3. Roy, Jyotirmoy & Alam, Shariful, 2020. "Fear factor in a prey–predator system in deterministic and stochastic environment," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 541(C).
    4. Seadawy, A.R. & El-Kalaawy, O.H. & Aldenari, R.B., 2016. "Water wave solutions of Zufiria’s higher-order Boussinesq type equations and its stability," Applied Mathematics and Computation, Elsevier, vol. 280(C), pages 57-71.
    5. Yu, Guo-Fu & Hu, Xing-Biao, 2009. "Extended Gram-type determinant solutions to the Kadomtsev–Petviashvili equation," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 80(1), pages 184-191.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:39:y:2009:i:3:p:1100-1108. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.