IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v39y2009i2p599-609.html
   My bibliography  Save this article

Travelling wavefronts of a generalized Fisher equation with spatio-temporal delay

Author

Listed:
  • Jin, Chunhua
  • Yin, Jingxue
  • Wang, Yifu

Abstract

We discuss a generalized Fisher equation with a convolution term which introduces a time-delay in the nonlinearity. Special attention is paid to the existence and the asymptotic behavior of travelling wavefronts connecting two uniform steady states.

Suggested Citation

  • Jin, Chunhua & Yin, Jingxue & Wang, Yifu, 2009. "Travelling wavefronts of a generalized Fisher equation with spatio-temporal delay," Chaos, Solitons & Fractals, Elsevier, vol. 39(2), pages 599-609.
  • Handle: RePEc:eee:chsofr:v:39:y:2009:i:2:p:599-609
    DOI: 10.1016/j.chaos.2007.01.078
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077907001919
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2007.01.078?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Xu, Rui & Chaplain, M.A.J. & Davidson, F.A., 2006. "Travelling wave and convergence in stage-structured reaction–diffusion competitive models with nonlocal delays," Chaos, Solitons & Fractals, Elsevier, vol. 30(4), pages 974-992.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wu, Shi-Liang & Li, Wan-Tong, 2009. "Global asymptotic stability of bistable traveling fronts in reaction-diffusion systems and their applications to biological models," Chaos, Solitons & Fractals, Elsevier, vol. 40(3), pages 1229-1239.
    2. Upadhyay, Ranjit Kumar & Kumari, Nitu & Rai, Vikas, 2009. "Exploring dynamical complexity in diffusion driven predator–prey systems: Effect of toxin producing phytoplankton and spatial heterogeneities," Chaos, Solitons & Fractals, Elsevier, vol. 42(1), pages 584-594.
    3. Li, Wan-Tong & Wu, Shi-Liang, 2008. "Traveling waves in a diffusive predator–prey model with holling type-III functional response," Chaos, Solitons & Fractals, Elsevier, vol. 37(2), pages 476-486.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:39:y:2009:i:2:p:599-609. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.