IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v38y2008i4p1177-1186.html
   My bibliography  Save this article

Bifurcations of the limit cycles in a z3-equivariant quartic planar vector field

Author

Listed:
  • Wu, Yuhai
  • Gao, Yongxi
  • Han, Maoan

Abstract

In this paper, a Z3-equivariant quartic planar vector field is studied. The Hopf bifurcation method and polycycle bifurcation method are combined to study the limit cycles bifurcated from the polycycle with three hyperbolic saddle points. It is found that this special quartic planar polynomial system has at least three large limit cycles which surround 13 singular points. By applying the double homoclinic loops bifurcation method and Poincaré–Bendixson theorem, we conclude that 16 limit cycles with two different configurations exist in this special planar polynomial system. The results acquired in this paper are useful to the study of the second part of 16th Hilbert Problem.

Suggested Citation

  • Wu, Yuhai & Gao, Yongxi & Han, Maoan, 2008. "Bifurcations of the limit cycles in a z3-equivariant quartic planar vector field," Chaos, Solitons & Fractals, Elsevier, vol. 38(4), pages 1177-1186.
  • Handle: RePEc:eee:chsofr:v:38:y:2008:i:4:p:1177-1186
    DOI: 10.1016/j.chaos.2007.02.019
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077907001208
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2007.02.019?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liang, Feng & Han, Maoan, 2012. "Limit cycles near generalized homoclinic and double homoclinic loops in piecewise smooth systems," Chaos, Solitons & Fractals, Elsevier, vol. 45(4), pages 454-464.
    2. Yanli Tang & Dongmei Zhang & Feng Li, 2022. "Limit Cycles and Integrability of a Class of Quintic System," Mathematics, MDPI, vol. 10(16), pages 1-11, August.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:38:y:2008:i:4:p:1177-1186. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.