IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v38y2008i1p112-119.html
   My bibliography  Save this article

On new solutions of fuzzy differential equations

Author

Listed:
  • Chalco-Cano, Y.
  • Román-Flores, H.

Abstract

We study fuzzy differential equations (FDE) using the concept of generalized H-differentiability. This concept is based in the enlargement of the class of differentiable fuzzy mappings and, for this, we consider the lateral Hukuhara derivatives. We will see that both derivatives are different and they lead us to different solutions from a FDE. Also, some illustrative examples are given and some comparisons with other methods for solving FDE are made.

Suggested Citation

  • Chalco-Cano, Y. & Román-Flores, H., 2008. "On new solutions of fuzzy differential equations," Chaos, Solitons & Fractals, Elsevier, vol. 38(1), pages 112-119.
  • Handle: RePEc:eee:chsofr:v:38:y:2008:i:1:p:112-119
    DOI: 10.1016/j.chaos.2006.10.043
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077906010241
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2006.10.043?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Abbasbandy, S. & Nieto, Juan J. & Alavi, M., 2005. "Tuning of reachable set in one dimensional fuzzy differential inclusions," Chaos, Solitons & Fractals, Elsevier, vol. 26(5), pages 1337-1341.
    2. El Naschie, M.S., 2005. "From experimental quantum optics to quantum gravity via a fuzzy Kähler manifold," Chaos, Solitons & Fractals, Elsevier, vol. 25(5), pages 969-977.
    3. Nieto, Juan J. & Rodríguez-López, Rosana, 2006. "Bounded solutions for fuzzy differential and integral equations," Chaos, Solitons & Fractals, Elsevier, vol. 27(5), pages 1376-1386.
    4. Román-Flores, Heriberto & Chalco-Cano, Y., 2005. "Robinson’s chaos in set-valued discrete systems," Chaos, Solitons & Fractals, Elsevier, vol. 25(1), pages 33-42.
    5. M. Oberguggenberger & S. Pittschmann, 1999. "Differential Equations With Fuzzy Parameters," Mathematical and Computer Modelling of Dynamical Systems, Taylor & Francis Journals, vol. 5(3), pages 181-202, September.
    6. Zhang, Hongbin & Liao, Xiaofeng & Yu, Juebang, 2005. "Fuzzy modeling and synchronization of hyperchaotic systems," Chaos, Solitons & Fractals, Elsevier, vol. 26(3), pages 835-843.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hoang Viet Long & Haifa Bin Jebreen & Y. Chalco-Cano, 2020. "A New Continuous-Discrete Fuzzy Model and Its Application in Finance," Mathematics, MDPI, vol. 8(10), pages 1-15, October.
    2. U. M. Pirzada & V. D. Pathak, 2013. "Newton Method for Solving the Multi-Variable Fuzzy Optimization Problem," Journal of Optimization Theory and Applications, Springer, vol. 156(3), pages 867-881, March.
    3. Rao, T.D. & Chakraverty, S., 2021. "Forward and inverse techniques for fuzzy fractional systems applied to radon transport in soil chambers," Chaos, Solitons & Fractals, Elsevier, vol. 147(C).
    4. Sankar Prasad Mondal & Tapan Kumar Roy, 2017. "Solution of second order linear fuzzy ordinary differential equation by Lagrange multiplier method with application in mechanics," OPSEARCH, Springer;Operational Research Society of India, vol. 54(4), pages 766-798, December.
    5. Ho Vu, 2017. "Random Fuzzy Differential Equations with Impulses," Complexity, Hindawi, vol. 2017, pages 1-11, June.
    6. Luciano Stefanini & Barnabas Bede, 2008. "Generalized Hukuhara Differentiability of Interval-valued Functions and Interval Differential Equations," Working Papers 0803, University of Urbino Carlo Bo, Department of Economics, Society & Politics - Scientific Committee - L. Stefanini & G. Travaglini, revised 2008.
    7. Nadjafikhah, M. & Bakhshandeh-Chamazkoti, R., 2009. "Fuzzy differential invariant (FDI)," Chaos, Solitons & Fractals, Elsevier, vol. 42(3), pages 1677-1683.
    8. A. Rufián-Lizana & Y. Chalco-Cano & G. Ruiz-Garzón & H. Román-Flores, 2014. "On some characterizations of preinvex fuzzy mappings," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 22(2), pages 771-783, July.
    9. Eman Hussain & Ayad Ali, 2013. "Homotopy Analysis Method for Solving Fuzzy Integro-Differential Equations," Modern Applied Science, Canadian Center of Science and Education, vol. 7(3), pages 1-15, March.
    10. Jin, Ting & Sun, Yun & Zhu, Yuanguo, 2020. "Time integral about solution of an uncertain fractional order differential equation and application to zero-coupon bond model," Applied Mathematics and Computation, Elsevier, vol. 372(C).
    11. Thanh-Lam Nguyen, 2017. "Methods in Ranking Fuzzy Numbers: A Unified Index and Comparative Reviews," Complexity, Hindawi, vol. 2017, pages 1-13, July.
    12. Alijani, Zahra & Baleanu, Dumitru & Shiri, Babak & Wu, Guo-Cheng, 2020. "Spline collocation methods for systems of fuzzy fractional differential equations," Chaos, Solitons & Fractals, Elsevier, vol. 131(C).
    13. Harb, Ahmad M. & Smadi, Issam A., 2009. "Tracking control of DC motors via mimo nonlinear fuzzy control," Chaos, Solitons & Fractals, Elsevier, vol. 42(2), pages 702-710.
    14. Animesh Mahata & Sankar Prasad Mondal & Ali Ahmadian & Fudiah Ismail & Shariful Alam & Soheil Salahshour, 2018. "Different Solution Strategies for Solving Epidemic Model in Imprecise Environment," Complexity, Hindawi, vol. 2018, pages 1-18, May.
    15. Ahmadian, A. & Salahshour, S. & Ali-Akbari, M. & Ismail, F. & Baleanu, D., 2017. "A novel approach to approximate fractional derivative with uncertain conditions," Chaos, Solitons & Fractals, Elsevier, vol. 104(C), pages 68-76.
    16. Nguyen Dinh Phu, 2016. "On Nonlocal Initial Problems for Fuzzy Differential Equations and Environmental Pollution Problems," Academic Journal of Applied Mathematical Sciences, Academic Research Publishing Group, vol. 2(8), pages 77-92, 08-2016.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nieto, Juan J. & Rodríguez-López, Rosana, 2006. "Bounded solutions for fuzzy differential and integral equations," Chaos, Solitons & Fractals, Elsevier, vol. 27(5), pages 1376-1386.
    2. Khastan, A. & Ivaz, K., 2009. "Numerical solution of fuzzy differential equations by Nyström method," Chaos, Solitons & Fractals, Elsevier, vol. 41(2), pages 859-868.
    3. Dehghan, Mehdi & Hashemi, Behnam & Ghatee, Mehdi, 2007. "Solution of the fully fuzzy linear systems using iterative techniques," Chaos, Solitons & Fractals, Elsevier, vol. 34(2), pages 316-336.
    4. Yilmaz, Yilmaz, 2009. "Fréchet differentiation of nonlinear operators between fuzzy normed spaces," Chaos, Solitons & Fractals, Elsevier, vol. 41(1), pages 473-484.
    5. Nadjafikhah, M. & Bakhshandeh-Chamazkoti, R., 2009. "Fuzzy differential invariant (FDI)," Chaos, Solitons & Fractals, Elsevier, vol. 42(3), pages 1677-1683.
    6. Cánovas Peña, Jose S. & López, Gabriel Soler, 2006. "Topological entropy for induced hyperspace maps," Chaos, Solitons & Fractals, Elsevier, vol. 28(4), pages 979-982.
    7. Senouci, Abdelkader & Boukabou, Abdelkrim, 2014. "Predictive control and synchronization of chaotic and hyperchaotic systems based on a T–S fuzzy model," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 105(C), pages 62-78.
    8. Sadeqi, I. & Kia, F. Solaty, 2009. "Fuzzy normed linear space and its topological structure," Chaos, Solitons & Fractals, Elsevier, vol. 40(5), pages 2576-2589.
    9. Agop, M. & Murgulet, C., 2007. "Ball lightning as a self-organizing process of a plasma–plasma interface and El Naschie’s ε(∞) space–time," Chaos, Solitons & Fractals, Elsevier, vol. 33(3), pages 754-769.
    10. Agop, M. & Rusu, Ioana, 2007. "El Naschie’s self-organization of the patterns in a plasma discharge: Experimental and theoretical results," Chaos, Solitons & Fractals, Elsevier, vol. 34(2), pages 172-186.
    11. Mawia Osman & Yonghui Xia & Omer Abdalrhman Omer & Ahmed Hamoud, 2022. "On the Fuzzy Solution of Linear-Nonlinear Partial Differential Equations," Mathematics, MDPI, vol. 10(13), pages 1-49, June.
    12. Nada, S.I., 2006. "Fractal dimension of chaotic dynamical spaces," Chaos, Solitons & Fractals, Elsevier, vol. 30(2), pages 374-379.
    13. El Naschie, Mohamed Saladin, 2006. "The idealized quantum two-slit gedanken experiment revisited—Criticism and reinterpretation," Chaos, Solitons & Fractals, Elsevier, vol. 27(4), pages 843-849.
    14. Kwietniak, Dominik & Oprocha, Piotr, 2007. "Topological entropy and chaos for maps induced on hyperspaces," Chaos, Solitons & Fractals, Elsevier, vol. 33(1), pages 76-86.
    15. Andres, Jan, 2020. "Chaos for multivalued maps and induced hyperspace maps," Chaos, Solitons & Fractals, Elsevier, vol. 138(C).
    16. Animesh Mahata & Sankar Prasad Mondal & Ali Ahmadian & Fudiah Ismail & Shariful Alam & Soheil Salahshour, 2018. "Different Solution Strategies for Solving Epidemic Model in Imprecise Environment," Complexity, Hindawi, vol. 2018, pages 1-18, May.
    17. Soleimani-damaneh, M., 2009. "Establishing the existence of a distance-based upper bound for a fuzzy DEA model using duality," Chaos, Solitons & Fractals, Elsevier, vol. 41(1), pages 485-490.
    18. Wang, Yangeng & Wei, Guo & Campbell, William H. & Bourquin, Steven, 2009. "A framework of induced hyperspace dynamical systems equipped with the hit-or-miss topology," Chaos, Solitons & Fractals, Elsevier, vol. 41(4), pages 1708-1717.
    19. Sahin, Bayram, 2008. "Screen transversal lightlike submanifolds of indefinite Kaehler manifolds," Chaos, Solitons & Fractals, Elsevier, vol. 38(5), pages 1439-1448.
    20. Mahmood Otadi & Maryam Mosleh, 2012. "Solution of Fuzzy Matrix Equation System," International Journal of Mathematics and Mathematical Sciences, Hindawi, vol. 2012, pages 1-8, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:38:y:2008:i:1:p:112-119. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.