IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v36y2008i2p452-459.html
   My bibliography  Save this article

Stabilization at almost arbitrary points for chaotic systems

Author

Listed:
  • Huang, Cheng-Sea
  • Lian, Kuang-Yow
  • Su, Chien-Hsing
  • Wu, Jinn-Wen

Abstract

We consider how to design a feasible control input for chaotic systems via a suitable input channel to achieve the stabilization at arbitrary points. Regarding the nonlinear systems without naturally defined input vectors, we propose a local stabilization controller which works for almost arbitrary points. Subsequently, according to topologically transitive property for chaotic systems, the feedback control force is activated only when the trajectory passes through the neighboring region of the regulated point. Hence the global stabilization is achieved whereas the control effort of the hybrid controller is extremely low.

Suggested Citation

  • Huang, Cheng-Sea & Lian, Kuang-Yow & Su, Chien-Hsing & Wu, Jinn-Wen, 2008. "Stabilization at almost arbitrary points for chaotic systems," Chaos, Solitons & Fractals, Elsevier, vol. 36(2), pages 452-459.
  • Handle: RePEc:eee:chsofr:v:36:y:2008:i:2:p:452-459
    DOI: 10.1016/j.chaos.2006.06.103
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077906006746
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2006.06.103?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Park, Ju H., 2005. "Chaos synchronization of a chaotic system via nonlinear control," Chaos, Solitons & Fractals, Elsevier, vol. 25(3), pages 579-584.
    2. Park, Ju H., 2005. "Controlling chaotic systems via nonlinear feedback control," Chaos, Solitons & Fractals, Elsevier, vol. 23(3), pages 1049-1054.
    3. Park, Ju H., 2005. "On synchronization of unified chaotic systems via nonlinear Control," Chaos, Solitons & Fractals, Elsevier, vol. 25(3), pages 699-704.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yu, Yongguang, 2008. "Adaptive synchronization of a unified chaotic system," Chaos, Solitons & Fractals, Elsevier, vol. 36(2), pages 329-333.
    2. Guo, C.X. & Jiang, Q.Y. & Cao, Y.J., 2007. "Controlling chaotic oscillations via nonlinear observer approach," Chaos, Solitons & Fractals, Elsevier, vol. 34(3), pages 1014-1019.
    3. Vadivel, R. & Sabarathinam, S. & Wu, Yongbao & Chaisena, Kantapon & Gunasekaran, Nallappan, 2022. "New results on T–S fuzzy sampled-data stabilization for switched chaotic systems with its applications," Chaos, Solitons & Fractals, Elsevier, vol. 164(C).
    4. Tarai (Poria), Anindita & Poria, Swarup & Chatterjee, Prasanta, 2009. "Synchronization of generalised linearly bidirectionally coupled unified chaotic system," Chaos, Solitons & Fractals, Elsevier, vol. 40(2), pages 885-892.
    5. Park, Ju H., 2006. "Chaos synchronization of nonlinear Bloch equations," Chaos, Solitons & Fractals, Elsevier, vol. 27(2), pages 357-361.
    6. Lam, H.K., 2009. "Output-feedback synchronization of chaotic systems based on sum-of-squares approach," Chaos, Solitons & Fractals, Elsevier, vol. 41(5), pages 2624-2629.
    7. Baishya, Chandrali & Premakumari, R.N. & Samei, Mohammad Esmael & Naik, Manisha Krishna, 2023. "Chaos control of fractional order nonlinear Bloch equation by utilizing sliding mode controller," Chaos, Solitons & Fractals, Elsevier, vol. 174(C).
    8. Park, Ju H., 2005. "Chaos synchronization of a chaotic system via nonlinear control," Chaos, Solitons & Fractals, Elsevier, vol. 25(3), pages 579-584.
    9. Yao, Qijia, 2021. "Synchronization of second-order chaotic systems with uncertainties and disturbances using fixed-time adaptive sliding mode control," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).
    10. Park, Ju H., 2005. "On synchronization of unified chaotic systems via nonlinear Control," Chaos, Solitons & Fractals, Elsevier, vol. 25(3), pages 699-704.
    11. Mahmoud, Gamal M. & Mahmoud, Emad E. & Farghaly, Ahmed A. & Aly, Shaban A., 2009. "Chaotic synchronization of two complex nonlinear oscillators," Chaos, Solitons & Fractals, Elsevier, vol. 42(5), pages 2858-2864.
    12. Yang, Li-Xin & Chu, Yan-Dong & Zhang, Jian-Gang & Li, Xian-Feng & Chang, Ying-Xiang, 2009. "Chaos synchronization in autonomous chaotic system via hybrid feedback control," Chaos, Solitons & Fractals, Elsevier, vol. 41(1), pages 214-223.
    13. Mossa Al-sawalha, M. & Noorani, M.S.M., 2009. "On anti-synchronization of chaotic systems via nonlinear control," Chaos, Solitons & Fractals, Elsevier, vol. 42(1), pages 170-179.
    14. Sun, Yeong-Jeu, 2009. "Exponential synchronization between two classes of chaotic systems," Chaos, Solitons & Fractals, Elsevier, vol. 39(5), pages 2363-2368.
    15. Zhou, Shuang-Shuang & Jahanshahi, Hadi & Din, Qamar & Bekiros, Stelios & Alcaraz, Raúl & Alassafi, Madini O. & Alsaadi, Fawaz E. & Chu, Yu-Ming, 2021. "Discrete-time macroeconomic system: Bifurcation analysis and synchronization using fuzzy-based activation feedback control," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).
    16. J. Humberto Pérez-Cruz & Pedro A. Tamayo-Meza & Maricela Figueroa & Ramón Silva-Ortigoza & Mario Ponce-Silva & R. Rivera-Blas & Mario Aldape-Pérez, 2019. "Exponential Synchronization of Chaotic Xian System Using Linear Feedback Control," Complexity, Hindawi, vol. 2019, pages 1-10, July.
    17. Mahmoud, Gamal M. & Aly, Shaban A. & Farghaly, Ahmed A., 2007. "On chaos synchronization of a complex two coupled dynamos system," Chaos, Solitons & Fractals, Elsevier, vol. 33(1), pages 178-187.
    18. Park, Ju H., 2006. "Synchronization of a class of chaotic dynamic systems with controller gain variations," Chaos, Solitons & Fractals, Elsevier, vol. 27(5), pages 1279-1284.
    19. Durdu, Ali & Uyaroğlu, Yılmaz, 2022. "Comparison of synchronization of chaotic Burke-Shaw attractor with active control and integer-order and fractional-order P-C method," Chaos, Solitons & Fractals, Elsevier, vol. 164(C).
    20. Yu, Yongguang, 2007. "The synchronization for time-delay of linearly bidirectional coupled chaotic system," Chaos, Solitons & Fractals, Elsevier, vol. 33(4), pages 1197-1203.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:36:y:2008:i:2:p:452-459. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.