IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v36y2008i2p271-277.html
   My bibliography  Save this article

Reduced equations of the self-dual Yang–Mills equations and applications

Author

Listed:
  • Zhang, Yufeng
  • Tam, Honwah
  • Jiang, Wei

Abstract

A few reduced equations from the self-dual Yang–Mills equations are presented, which are seemly extended zero curvature equations. As their applications, a good many nonlinear evolution equations could be obtained. In this paper, a (2+1)-dimensional AKNS hierarchy of soliton equations is generated from one of reduced equations of the self-dual Yang–Mills equations. With the help of a proper loop algebra, the Hamiltonian structure of its expanding integrable model (actually, its integrable couplings) is worked out by using the quadratic-form identity, which is Liouville integrable. The way presented in the paper has extensive applications. That is to say, making use of the approach specially a few higher-dimensional zero curvature equations in the paper could produce a lots of higher-dimensional integrable coupling systems and their corresponding Hamiltonian structures.

Suggested Citation

  • Zhang, Yufeng & Tam, Honwah & Jiang, Wei, 2008. "Reduced equations of the self-dual Yang–Mills equations and applications," Chaos, Solitons & Fractals, Elsevier, vol. 36(2), pages 271-277.
  • Handle: RePEc:eee:chsofr:v:36:y:2008:i:2:p:271-277
    DOI: 10.1016/j.chaos.2006.06.030
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077906006126
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2006.06.030?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:36:y:2008:i:2:p:271-277. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.