IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v35y2008i2p285-290.html
   My bibliography  Save this article

From E-eight to E-Infinity

Author

Listed:
  • El Naschie, M.S.

Abstract

The paper discusses the recently uncovered connections between certain finite Exceptional Lie symmetry group hierarchy and the standard model of elementary particles as well as the unification of all fundamental interactions including gravity. We start from the E8 Exceptional Lie group and proceed by reviewing various alternatives including E10 and E11. We conclude by proposing that the hierarchical E∞ is the true average fractal symmetry of E-Infinity theory and consequently the proper extension of the Exceptional Lie groups to the transfinite setting of E-Infinity spacetime.

Suggested Citation

  • El Naschie, M.S., 2008. "From E-eight to E-Infinity," Chaos, Solitons & Fractals, Elsevier, vol. 35(2), pages 285-290.
  • Handle: RePEc:eee:chsofr:v:35:y:2008:i:2:p:285-290
    DOI: 10.1016/j.chaos.2007.06.111
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077907004638
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2007.06.111?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. He, Ji-Huan & Xu, Lan & Zhang, Li-Na & Wu, Xu-Hong, 2007. "Twenty-six dimensional polytope and high energy spacetime physics," Chaos, Solitons & Fractals, Elsevier, vol. 33(1), pages 5-13.
    2. El Naschie, M.S., 2006. "Elementary prerequisites for E-infinity," Chaos, Solitons & Fractals, Elsevier, vol. 30(3), pages 579-605.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Goudarzi, M. & Vaezpour, S.M. & Saadati, R., 2009. "On the intuitionistic fuzzy inner product spaces," Chaos, Solitons & Fractals, Elsevier, vol. 41(3), pages 1105-1112.
    2. El Naschie, M.S., 2008. "High energy physics and the standard model from the exceptional Lie groups," Chaos, Solitons & Fractals, Elsevier, vol. 36(1), pages 1-17.
    3. El Naschie, M.S., 2008. "Mathematical foundation of E-Infinity via Coxeter and reflection groups," Chaos, Solitons & Fractals, Elsevier, vol. 37(5), pages 1267-1268.
    4. Rani, Mamta & Agarwal, Rashi, 2009. "Generation of fractals from complex logistic map," Chaos, Solitons & Fractals, Elsevier, vol. 42(1), pages 447-452.
    5. El-Okaby, Ayman A., 2008. "Exceptional Lie groups, E-infinity theory and Higgs Boson," Chaos, Solitons & Fractals, Elsevier, vol. 38(5), pages 1305-1317.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. El Naschie, M.S., 2008. "Exceptional Lie groups hierarchy and some fundamental high energy physics equations," Chaos, Solitons & Fractals, Elsevier, vol. 35(1), pages 82-84.
    2. El Naschie, M.S., 2008. "Deriving the largest expected number of elementary particles in the standard model from the maximal compact subgroup H of the exceptional Lie group E7(-5)," Chaos, Solitons & Fractals, Elsevier, vol. 38(4), pages 956-961.
    3. El Naschie, M.S., 2008. "Kaluza–Klein unification – Some possible extensions," Chaos, Solitons & Fractals, Elsevier, vol. 37(1), pages 16-22.
    4. El Naschie, M.S., 2008. "Conjectures regarding kissing spheres hierarchy and quantum gravity unification," Chaos, Solitons & Fractals, Elsevier, vol. 35(2), pages 346-350.
    5. El Naschie, M.S., 2008. "Removing spurious non-linearity in the structure of micro-spacetime and quantum field renormalization," Chaos, Solitons & Fractals, Elsevier, vol. 37(1), pages 60-64.
    6. Serletis, Demitre, 2008. "Effect of noise on fractal structure," Chaos, Solitons & Fractals, Elsevier, vol. 38(4), pages 921-924.
    7. El Naschie, M.S., 2008. "High energy physics and the standard model from the exceptional Lie groups," Chaos, Solitons & Fractals, Elsevier, vol. 36(1), pages 1-17.
    8. El Naschie, M.S., 2008. "Conformal E-infinity theory, exceptional Lie groups and the elementary particle content of the standard model," Chaos, Solitons & Fractals, Elsevier, vol. 35(2), pages 216-219.
    9. El Naschie, M.S., 2008. "An outline for a quantum golden field theory," Chaos, Solitons & Fractals, Elsevier, vol. 37(2), pages 317-323.
    10. El Naschie, M.S., 2008. "String theory, exceptional Lie groups hierarchy and the structural constant of the universe," Chaos, Solitons & Fractals, Elsevier, vol. 35(1), pages 7-12.
    11. El Naschie, M.S., 2008. "Fuzzy knot theory interpretation of Yang–Mills instantons and Witten’s 5-Brane model," Chaos, Solitons & Fractals, Elsevier, vol. 38(5), pages 1349-1354.
    12. Kocer, E. Gokcen & Tuglu, Naim & Stakhov, Alexey, 2009. "On the m-extension of the Fibonacci and Lucas p-numbers," Chaos, Solitons & Fractals, Elsevier, vol. 40(4), pages 1890-1906.
    13. Nasef, Arafa A. & Hatir, E., 2009. "On fuzzy pre-I-open sets and a decomposition of fuzzy I-continuity," Chaos, Solitons & Fractals, Elsevier, vol. 40(3), pages 1185-1189.
    14. El Naschie, M.S., 2007. "Feigenbaum scenario for turbulence and Cantorian E-infinity theory of high energy particle physics," Chaos, Solitons & Fractals, Elsevier, vol. 32(3), pages 911-915.
    15. He, Ji-Huan, 2009. "Hilbert cube model for fractal spacetime," Chaos, Solitons & Fractals, Elsevier, vol. 42(5), pages 2754-2759.
    16. El Naschie, M.S., 2007. "On the universality class of all universality classes and E-infinity spacetime physics," Chaos, Solitons & Fractals, Elsevier, vol. 32(3), pages 927-936.
    17. El Naschie, M.S., 2008. "Average exceptional Lie and Coxeter group hierarchies with special reference to the standard model of high energy particle physics," Chaos, Solitons & Fractals, Elsevier, vol. 37(3), pages 662-668.
    18. He, Ji-Huan, 2009. "Nonlinear science as a fluctuating research frontier," Chaos, Solitons & Fractals, Elsevier, vol. 41(5), pages 2533-2537.
    19. El Naschie, M.S., 2009. "Arguments for the compactness and multiple connectivity of our cosmic spacetime," Chaos, Solitons & Fractals, Elsevier, vol. 41(5), pages 2787-2789.
    20. El Naschie, M.S., 2008. "Quarks confinement," Chaos, Solitons & Fractals, Elsevier, vol. 37(1), pages 6-8.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:35:y:2008:i:2:p:285-290. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.