IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v32y2007i2p661-675.html
   My bibliography  Save this article

The one-dimensional heat equation subject to a boundary integral specification

Author

Listed:
  • Dehghan, Mehdi

Abstract

Various processes in the natural sciences and engineering lead to the nonclassical parabolic initial boundary value problems which involve nonlocal integral terms over the spatial domain. The integral term may appear in the boundary conditions. It is the reason for which such problems gained much attention in recent years, not only in engineering but also in the mathematics community. In this paper the problem of solving the one-dimensional parabolic partial differential equation subject to given initial and nonlocal boundary conditions is considered. Several approaches for the numerical solution of this boundary value problem which have been considered in the literature, are reported. New finite difference techniques are proposed for the numerical solution of the one-dimensional heat equation subject to the specification of mass. Numerical examples are given at the end of this paper to compare the efficiency of the new techniques. Some specific applications in various engineering models are introduced.

Suggested Citation

  • Dehghan, Mehdi, 2007. "The one-dimensional heat equation subject to a boundary integral specification," Chaos, Solitons & Fractals, Elsevier, vol. 32(2), pages 661-675.
  • Handle: RePEc:eee:chsofr:v:32:y:2007:i:2:p:661-675
    DOI: 10.1016/j.chaos.2005.11.010
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077905010982
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2005.11.010?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Abdelfatah Bouziani, 2002. "On the solvability of parabolic and hyperbolic problems with a boundary integral condition," International Journal of Mathematics and Mathematical Sciences, Hindawi, vol. 31, pages 1-13, January.
    2. Abdelfatah Bouziani, 2003. "On the weak solution of a three-point boundary value problem for a class of parabolic equations with energy specification," Abstract and Applied Analysis, Hindawi, vol. 2003, pages 1-17, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dehghan, Mehdi & Saadatmandi, Abbas, 2009. "Variational iteration method for solving the wave equation subject to an integral conservation condition," Chaos, Solitons & Fractals, Elsevier, vol. 41(3), pages 1448-1453.
    2. Dehghan, Mehdi & Shakourifar, Mohammad & Hamidi, Asgar, 2009. "The solution of linear and nonlinear systems of Volterra functional equations using Adomian–Pade technique," Chaos, Solitons & Fractals, Elsevier, vol. 39(5), pages 2509-2521.
    3. Deng, Aimin & Lin, Ji & Liu, Chein-Shan, 2022. "Boundary shape function iterative method for nonlinear second-order boundary value problems with nonlinear boundary conditions," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 194(C), pages 539-551.
    4. Cui, Ming Rong, 2015. "Convergence analysis of compact difference schemes for diffusion equation with nonlocal boundary conditions," Applied Mathematics and Computation, Elsevier, vol. 260(C), pages 227-241.
    5. Yüzbaşı, Şuayip, 2018. "A collocation approach for solving two-dimensional second-order linear hyperbolic equations," Applied Mathematics and Computation, Elsevier, vol. 338(C), pages 101-114.
    6. Martín-Vaquero, J., 2009. "Two-level fourth-order explicit schemes for diffusion equations subject to boundary integral specifications," Chaos, Solitons & Fractals, Elsevier, vol. 42(4), pages 2364-2372.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.

      More about this item

      Statistics

      Access and download statistics

      Corrections

      All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:32:y:2007:i:2:p:661-675. See general information about how to correct material in RePEc.

      If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

      If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

      If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

      For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

      Please note that corrections may take a couple of weeks to filter through the various RePEc services.

      IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.