IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v32y2007i2p363-369.html
   My bibliography  Save this article

On the origin of the gravitational quantization: The Titius–Bode law

Author

Listed:
  • Giné, Jaume

Abstract

Action at distance in Newtonian physics is replaced by finite propagation speeds in classical post-Newtonian physics. As a result, the differential equations of motion in Newtonian physics are replaced by functional differential equations, where the delay associated with the finite propagation speed is taken into account. Newtonian equations of motion, with post-Newtonian corrections, are often used to approximate the functional differential equations. In [Giné J. On the origin of quantum mechanics. Chaos, Solitons & Fractals 2006;30(3):532–41], a simple atomic model based on a functional differential equation which reproduces the quantized Bohr atomic model was presented. The unique assumption was that the electrodynamic interaction has finite propagation speed. Are the finite propagation speeds also the origin of gravitational quantization? In this work a simple gravitational model based on a functional differential equation gives an explanation of the modified Titius–Bode law.

Suggested Citation

  • Giné, Jaume, 2007. "On the origin of the gravitational quantization: The Titius–Bode law," Chaos, Solitons & Fractals, Elsevier, vol. 32(2), pages 363-369.
  • Handle: RePEc:eee:chsofr:v:32:y:2007:i:2:p:363-369
    DOI: 10.1016/j.chaos.2006.06.066
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077906006503
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2006.06.066?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. de Oliveira Neto, Marçal, 2006. "Pythagoras’ celestial spheres in the context of a simple model for quantization of planetary orbits," Chaos, Solitons & Fractals, Elsevier, vol. 30(2), pages 399-406.
    2. Oliveira Neto, Marçal de, 2005. "Using the dimensionless Newton gravity constant α¯G to estimate planetary orbits," Chaos, Solitons & Fractals, Elsevier, vol. 24(1), pages 19-27.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Krot, Alexander M., 2009. "A statistical approach to investigate the formation of the solar system," Chaos, Solitons & Fractals, Elsevier, vol. 41(3), pages 1481-1500.
    2. Pintr, P. & Peřinová, V. & Lukš, A., 2008. "Allowed planetary orbits in the solar system," Chaos, Solitons & Fractals, Elsevier, vol. 36(5), pages 1273-1282.
    3. de Oliveira Neto, Marçal, 2007. "On a mass independent approach leading to planetary orbit discretization," Chaos, Solitons & Fractals, Elsevier, vol. 33(3), pages 740-747.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:32:y:2007:i:2:p:363-369. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.