IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v31y2007i4p937-942.html
   My bibliography  Save this article

Exact solutions to two higher order nonlinear Schrödinger equations

Author

Listed:
  • Xu, Li-Ping
  • Zhang, Jin-Liang

Abstract

Using the homogeneous balance principle and F-expansion method, the exact solutions to two higher order nonlinear Schrödinger equations which describe the propagation of femtosecond pulses in nonlinear fibres are obtained with the aid of a set of subsidiary higher order ordinary differential equations (sub-equations for short).

Suggested Citation

  • Xu, Li-Ping & Zhang, Jin-Liang, 2007. "Exact solutions to two higher order nonlinear Schrödinger equations," Chaos, Solitons & Fractals, Elsevier, vol. 31(4), pages 937-942.
  • Handle: RePEc:eee:chsofr:v:31:y:2007:i:4:p:937-942
    DOI: 10.1016/j.chaos.2005.10.063
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S096007790501012X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2005.10.063?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Triki, Houria & Taha, Thiab R. & Wazwaz, Abdul-Majid, 2010. "Solitary wave solutions for a generalized KdV–mKdV equation with variable coefficients," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 80(9), pages 1867-1873.
    2. Triki, Houria & Taha, Thiab R., 2012. "Solitary wave solutions for a higher order nonlinear Schrödinger equation," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 82(7), pages 1333-1340.
    3. Öziş, Turgut & Yıldırım, Ahmet, 2008. "Reliable analysis for obtaining exact soliton solutions of nonlinear Schrödinger (NLS) equation," Chaos, Solitons & Fractals, Elsevier, vol. 38(1), pages 209-212.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:31:y:2007:i:4:p:937-942. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.