IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v31y2007i1p85-94.html
   My bibliography  Save this article

Self-similar structure of wire length distribution of random logic

Author

Listed:
  • Matsuba, Ikuo

Abstract

A general scaling theory is proposed to estimate a wire length distribution based on the self-similarity structure of random logic. It is theoretically shown that the d-dimensional wire length distribution denoted by fℓ(d) is of the form fℓ(d)∼ℓ-γ1(d) with a characteristic exponent γ1(d)=α(d)+2−dp for ℓ<ℓcrossover with some crossover length ℓcrossover, where ℓ is a wire length and p is the Rent’s partition exponent. The parameter α(d) is equal to d−1 and d for serialized and parallel wiring configurations, respectively. For wire lengths larger than ℓcrossover, fℓ(d)∼ℓ-γ2(d) is obtained with γ2(d)=α(d)+2. These results are in good agreement with experiments.

Suggested Citation

  • Matsuba, Ikuo, 2007. "Self-similar structure of wire length distribution of random logic," Chaos, Solitons & Fractals, Elsevier, vol. 31(1), pages 85-94.
  • Handle: RePEc:eee:chsofr:v:31:y:2007:i:1:p:85-94
    DOI: 10.1016/j.chaos.2005.09.043
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077905008854
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2005.09.043?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:31:y:2007:i:1:p:85-94. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.