IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v30y2006i5p1172-1179.html
   My bibliography  Save this article

Codimension-two bifurcation analysis on firing activities in Chay neuron model

Author

Listed:
  • Duan, Lixia
  • Lu, Qishao

Abstract

Using codimension-two bifurcation analysis in the Chay neuron model, the relationship between the electric activities and the parameters of neurons is revealed. The whole parameter space is divided into two parts, that is, the firing and silence regions of neurons. It is found that the transition sets between firing and silence regions are composed of the Hopf bifurcation curves of equilibrium states and the saddle-node bifurcation curves of limit cycles, with some codimension-two bifurcation points. The transitions from silence to firing in neurons are due to the Hopf bifurcation or the fold limit cycle bifurcation, but the codimension-two singularities lead to complexity in dynamical behaviour of neuronal firing.

Suggested Citation

  • Duan, Lixia & Lu, Qishao, 2006. "Codimension-two bifurcation analysis on firing activities in Chay neuron model," Chaos, Solitons & Fractals, Elsevier, vol. 30(5), pages 1172-1179.
  • Handle: RePEc:eee:chsofr:v:30:y:2006:i:5:p:1172-1179
    DOI: 10.1016/j.chaos.2005.08.179
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077905008519
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2005.08.179?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hu, Dongpo & Ma, Linyi & Song, Zigen & Zheng, Zhaowen & Cheng, Lifang & Liu, Ming, 2024. "Multiple bifurcations of a time-delayed coupled FitzHugh–Rinzel neuron system with chemical and electrical couplings," Chaos, Solitons & Fractals, Elsevier, vol. 180(C).
    2. Yu, Xihong & Bao, Han & Chen, Mo & Bao, Bocheng, 2023. "Energy balance via memristor synapse in Morris-Lecar two-neuron network with FPGA implementation," Chaos, Solitons & Fractals, Elsevier, vol. 171(C).
    3. Lu, Qishao & Yang, Zhuoqin & Duan, Lixia & Gu, Huaguang & Ren, Wei, 2009. "Dynamics and transitions of firing patterns in deterministic and stochastic neuronal systems," Chaos, Solitons & Fractals, Elsevier, vol. 40(2), pages 577-597.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:30:y:2006:i:5:p:1172-1179. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.