IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v29y2006i2p381-392.html
   My bibliography  Save this article

Observer-based control design for three well-known chaotic systems

Author

Listed:
  • Mahboobi, S.H.
  • Shahrokhi, M.
  • Pishkenari, H.N.

Abstract

In this paper, a singularity-free approach is proposed for controlling three well-known chaotic systems namely Lorenz, Chen and Lu. The control design guarantees the regulation of two states and boundedness of the remaining state. The stability of the proposed scheme has been shown using the Lyapunov stability theorem. Implementation of the proposed control technique requires system states, while in most of practical applications only the system output is available. To overcome this problem, a nonlinear observer is coupled with the controller. Simulation results have illustrated the effectiveness and robustness of the proposed schemes. If the control action is applied to the second system equation, all states will be regulated.

Suggested Citation

  • Mahboobi, S.H. & Shahrokhi, M. & Pishkenari, H.N., 2006. "Observer-based control design for three well-known chaotic systems," Chaos, Solitons & Fractals, Elsevier, vol. 29(2), pages 381-392.
  • Handle: RePEc:eee:chsofr:v:29:y:2006:i:2:p:381-392
    DOI: 10.1016/j.chaos.2005.08.042
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S096007790500665X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2005.08.042?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:29:y:2006:i:2:p:381-392. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.