IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v28y2006i3p822-833.html
   My bibliography  Save this article

Determining the flexibility of regular and chaotic attractors

Author

Listed:
  • Marhl, Marko
  • Perc, Matjaž

Abstract

We present an overview of measures that are appropriate for determining the flexibility of regular and chaotic attractors. In particular, we focus on those system properties that constitute its responses to external perturbations. We deploy a systematic approach, first introducing the simplest measure given by the local divergence of the system along the attractor, and then develop more rigorous mathematical tools for estimating the flexibility of the system’s dynamics. The presented measures are tested on the regular Brusselator and chaotic Hindmarsh–Rose model of an excitable neuron with equal success, thus indicating the overall effectiveness and wide applicability range of the proposed theory. Since responses of dynamical systems to external signals are crucial in several scientific disciplines, and especially in natural sciences, we discuss several important aspects and biological implications of obtained results.

Suggested Citation

  • Marhl, Marko & Perc, Matjaž, 2006. "Determining the flexibility of regular and chaotic attractors," Chaos, Solitons & Fractals, Elsevier, vol. 28(3), pages 822-833.
  • Handle: RePEc:eee:chsofr:v:28:y:2006:i:3:p:822-833
    DOI: 10.1016/j.chaos.2005.08.013
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077905006223
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2005.08.013?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Perc, Matjaž & Marhl, Marko, 2004. "Frequency dependent stochastic resonance in a model for intracellular Ca2+ oscillations can be explained by local divergence," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 332(C), pages 123-140.
    2. Perc, Matjaž & Marhl, Marko, 2006. "Chaos in temporarily destabilized regular systems with the slow passage effect," Chaos, Solitons & Fractals, Elsevier, vol. 27(2), pages 395-403.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chen, Juhn-Horng, 2008. "Controlling chaos and chaotification in the Chen–Lee system by multiple time delays," Chaos, Solitons & Fractals, Elsevier, vol. 36(4), pages 843-852.
    2. Khajanchi, Subhas & Ghosh, Dibakar, 2015. "The combined effects of optimal control in cancer remission," Applied Mathematics and Computation, Elsevier, vol. 271(C), pages 375-388.
    3. Tam, Lap Mou & Si Tou, Wai Meng, 2008. "Parametric study of the fractional-order Chen–Lee system," Chaos, Solitons & Fractals, Elsevier, vol. 37(3), pages 817-826.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tam, Lap Mou & Si Tou, Wai Meng, 2008. "Parametric study of the fractional-order Chen–Lee system," Chaos, Solitons & Fractals, Elsevier, vol. 37(3), pages 817-826.
    2. Chen, Juhn-Horng, 2008. "Controlling chaos and chaotification in the Chen–Lee system by multiple time delays," Chaos, Solitons & Fractals, Elsevier, vol. 36(4), pages 843-852.
    3. Markovič, Rene & Gosak, Marko & Marhl, Marko, 2014. "Broad-scale small-world network topology induces optimal synchronization of flexible oscillators," Chaos, Solitons & Fractals, Elsevier, vol. 69(C), pages 14-21.
    4. Wang, Zhen & Hu, Weipeng, 2021. "Resonance analysis of a single-walled carbon nanotube," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:28:y:2006:i:3:p:822-833. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.