IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v28y2006i3p724-738.html
   My bibliography  Save this article

Output feedback form of Chua’s circuit and modular adaptive control of chaos using single measurement

Author

Listed:
  • Maganti, Ganesh B.
  • Singh, Sahjendra N.

Abstract

The paper treats the question of the representation of the Chua’s circuit in an output feedback form and then derives an adaptive control system for the control of chaos by a single output (node voltage) feedback. The design is performed under the assumption that all the circuit parameters are unknown, but only the lower bound on the coefficient of virtual control input and its sign are given. Based on the output feedback form of the Chua’s circuit, certain filters are designed for the estimation of the state variables. The derived controller has a modular structure consisting of an input-to-state stabilizing (ISS) control module and a passive parameter identifier. In the closed-loop system, output trajectory control is accomplished and the state vector converges to the equilibrium point. Simulation results are presented which show that the designed control system regulates the node voltage to the reference point and suppresses the chaotic motion using a single node voltage feedback.

Suggested Citation

  • Maganti, Ganesh B. & Singh, Sahjendra N., 2006. "Output feedback form of Chua’s circuit and modular adaptive control of chaos using single measurement," Chaos, Solitons & Fractals, Elsevier, vol. 28(3), pages 724-738.
  • Handle: RePEc:eee:chsofr:v:28:y:2006:i:3:p:724-738
    DOI: 10.1016/j.chaos.2005.08.139
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077905007563
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2005.08.139?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chang, Wei-Der & Yan, Jun-Juh, 2005. "Adaptive robust PID controller design based on a sliding mode for uncertain chaotic systems," Chaos, Solitons & Fractals, Elsevier, vol. 26(1), pages 167-175.
    2. Fotsin, Hilaire & Bowong, Samuel & Daafouz, Jamal, 2005. "Adaptive synchronization of two chaotic systems consisting of modified Van der Pol–Duffing and Chua oscillators," Chaos, Solitons & Fractals, Elsevier, vol. 26(1), pages 215-229.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lee, Keum W. & Singh, Sahjendra N., 2007. "Robust control of chaos in Chua’s circuit based on internal model principle," Chaos, Solitons & Fractals, Elsevier, vol. 31(5), pages 1095-1107.
    2. Wang, Jiang & Si, Wenjie & Li, Huiyan, 2009. "Robust ISS-satisficing variable universe indirect fuzzy control for chaotic systems," Chaos, Solitons & Fractals, Elsevier, vol. 39(1), pages 28-38.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jiunn-Shiou Fang & Jason Sheng-Hong Tsai & Jun-Juh Yan & Chang-He Tzou & Shu-Mei Guo, 2019. "Design of Robust Trackers and Unknown Nonlinear Perturbation Estimators for a Class of Nonlinear Systems: HTRDNA Algorithm for Tracker Optimization," Mathematics, MDPI, vol. 7(12), pages 1-20, November.
    2. Peng, Ya-Fu, 2009. "Robust intelligent backstepping tracking control for uncertain non-linear chaotic systems using H∞ control technique," Chaos, Solitons & Fractals, Elsevier, vol. 41(4), pages 2081-2096.
    3. Zhou, Jin & Cheng, Xuhua & Xiang, Lan & Zhang, Yecui, 2007. "Impulsive control and synchronization of chaotic systems consisting of Van der Pol oscillators coupled to linear oscillators," Chaos, Solitons & Fractals, Elsevier, vol. 33(2), pages 607-616.
    4. Lin, Chih-Min & Chen, Chiu-Hsiung, 2008. "CMAC-based supervisory control for nonlinear chaotic systems," Chaos, Solitons & Fractals, Elsevier, vol. 35(1), pages 40-58.
    5. Wang, Jiang & Che, Yan-Qiu & Zhou, Si-Si & Deng, Bin, 2009. "Unidirectional synchronization of Hodgkin–Huxley neurons exposed to ELF electric field," Chaos, Solitons & Fractals, Elsevier, vol. 39(3), pages 1335-1345.
    6. Sharma, B.B. & Kar, I.N., 2009. "Parametric convergence and control of chaotic system using adaptive feedback linearization," Chaos, Solitons & Fractals, Elsevier, vol. 40(3), pages 1475-1483.
    7. Wang, Jiang & Zhang, Ting & Che, Yanqiu, 2007. "Chaos control and synchronization of two neurons exposed to ELF external electric field," Chaos, Solitons & Fractals, Elsevier, vol. 34(3), pages 839-850.
    8. Zheng, G. & Boutat, D. & Floquet, T. & Barbot, J.P., 2009. "Secure communication based on multi-input multi-output chaotic system with large message amplitude," Chaos, Solitons & Fractals, Elsevier, vol. 41(3), pages 1510-1517.
    9. Lee, Keum W. & Singh, Sahjendra N., 2007. "Robust control of chaos in Chua’s circuit based on internal model principle," Chaos, Solitons & Fractals, Elsevier, vol. 31(5), pages 1095-1107.
    10. Fotsin, Hilaire & Bowong, Samuel, 2006. "Adaptive control and synchronization of chaotic systems consisting of Van der Pol oscillators coupled to linear oscillators," Chaos, Solitons & Fractals, Elsevier, vol. 27(3), pages 822-835.
    11. Dadras, Sara & Momeni, Hamid Reza, 2010. "Adaptive sliding mode control of chaotic dynamical systems with application to synchronization," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 80(12), pages 2245-2257.
    12. Yu, Wenwu & Cao, Jinde, 2007. "Adaptive synchronization and lag synchronization of uncertain dynamical system with time delay based on parameter identification," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 375(2), pages 467-482.
    13. Dadras, Sara & Momeni, Hamid Reza, 2009. "Control uncertain Genesio–Tesi chaotic system: Adaptive sliding mode approach," Chaos, Solitons & Fractals, Elsevier, vol. 42(5), pages 3140-3146.
    14. Salarieh, Hassan & Shahrokhi, Mohammad, 2008. "Adaptive synchronization of two different chaotic systems with time varying unknown parameters," Chaos, Solitons & Fractals, Elsevier, vol. 37(1), pages 125-136.
    15. Tang, Fang, 2008. "An adaptive synchronization strategy based on active control for demodulating message hidden in chaotic signals," Chaos, Solitons & Fractals, Elsevier, vol. 37(4), pages 1090-1096.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:28:y:2006:i:3:p:724-738. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.