IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v27y2006i3p722-747.html
   My bibliography  Save this article

Complex dynamics in Duffing–Van der Pol equation

Author

Listed:
  • Jing, Zhujun
  • Yang, Zhiyan
  • Jiang, Tao

Abstract

Duffing–Van der Pol equation with fifth nonlinear-restoring force and two external forcing terms is investigated. The threshold values of existence of chaotic motion are obtained under the periodic perturbation. By second-order averaging method and Melnikov method, we prove the criterion of existence of chaos in averaged system under quasi-periodic perturbation for ω2=nω1+εσ, n=1, 3, 5, and cannot prove the criterion of existence of chaos in second-order averaged system under quasi-periodic perturbation for ω2=nω1+εσ, n=2, 4, 6, 7, 8, 9, 10, where σ is not rational to ω1, but can show the occurrence of chaos in original system by numerical simulation. Numerical simulations including heteroclinic and homoclinic bifurcation surfaces, bifurcation diagrams, Lyapunov exponent, phase portraits and Poincaré map, not only show the consistence with the theoretical analysis but also exhibit the more new complex dynamical behaviors. We show that cascades of interlocking period-doubling and reverse period-doubling bifurcations from period-2 to -4 and -6 orbits, interleaving occurrence of chaotic behaviors and quasi-periodic orbits, transient chaos with a great abundance of period windows, symmetry-breaking of periodic orbits in chaotic regions, onset of chaos which occurs more than one, chaos suddenly disappearing to period orbits, interior crisis, strange non-chaotic attractor, non-attracting chaotic set and nice chaotic attractors. Our results show many dynamical behaviors and some of them are strictly departure from the behaviors of Duffing–Van der Pol equation with a cubic nonlinear-restoring force and one external forcing.

Suggested Citation

  • Jing, Zhujun & Yang, Zhiyan & Jiang, Tao, 2006. "Complex dynamics in Duffing–Van der Pol equation," Chaos, Solitons & Fractals, Elsevier, vol. 27(3), pages 722-747.
  • Handle: RePEc:eee:chsofr:v:27:y:2006:i:3:p:722-747
    DOI: 10.1016/j.chaos.2005.04.044
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077905003668
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2005.04.044?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Siewe, M. Siewe & Cao, Hongjun & Sanjuán, Miguel A.F., 2009. "On the occurrence of chaos in a parametrically driven extended Rayleigh oscillator with three-well potential," Chaos, Solitons & Fractals, Elsevier, vol. 41(2), pages 772-782.
    2. Attili, Basem S., 2009. "A direct method for the numerical computation of bifurcation points underlying symmetries," Chaos, Solitons & Fractals, Elsevier, vol. 40(3), pages 1545-1551.
    3. Zhou, Jin & Cheng, Xuhua & Xiang, Lan & Zhang, Yecui, 2007. "Impulsive control and synchronization of chaotic systems consisting of Van der Pol oscillators coupled to linear oscillators," Chaos, Solitons & Fractals, Elsevier, vol. 33(2), pages 607-616.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:27:y:2006:i:3:p:722-747. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.