IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v27y2006i2p413-425.html
   My bibliography  Save this article

Bifurcations of travelling wave solutions in a new integrable equation with peakon and compactons

Author

Listed:
  • Shen, Jianwei
  • Xu, Wei
  • Li, Wei

Abstract

Degasperis and Procesi applied the method of asymptotic integrability and obtain Degasperis–Procesi equation. They showed that it has peakon solutions, which has a discontinuous first derivative at the wave peak, but they did not explain the reason that the peakon solution arises. In this paper, we study these non-smooth solutions of the generalized Degasperis–Procesi equation ut−utxx+(b+1)uux=buxuxx+uuxxx, show the reason that the non-smooth travelling wave arise and investigate global dynamical behavior and obtain the parameter condition under which peakon, compacton and another travelling wave solutions engender. Under some parameter condition, this equation has infinitely many compacton solutions. Finally, we give some explicit expression of peakon and compacton solutions.

Suggested Citation

  • Shen, Jianwei & Xu, Wei & Li, Wei, 2006. "Bifurcations of travelling wave solutions in a new integrable equation with peakon and compactons," Chaos, Solitons & Fractals, Elsevier, vol. 27(2), pages 413-425.
  • Handle: RePEc:eee:chsofr:v:27:y:2006:i:2:p:413-425
    DOI: 10.1016/j.chaos.2005.04.020
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077905003292
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2005.04.020?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yin, Jiuli & Xing, Qianqian & Tian, Lixin, 2015. "Orbital stability and dynamical behaviors of solitary waves for the Camassa–Holm equation with quartic nonlinearity," Chaos, Solitons & Fractals, Elsevier, vol. 76(C), pages 40-46.
    2. Abbasbandy, S. & Parkes, E.J., 2008. "Solitary smooth hump solutions of the Camassa–Holm equation by means of the homotopy analysis method," Chaos, Solitons & Fractals, Elsevier, vol. 36(3), pages 581-591.
    3. Abbasbandy, S., 2009. "Solitary wave solutions to the modified form of Camassa–Holm equation by means of the homotopy analysis method," Chaos, Solitons & Fractals, Elsevier, vol. 39(1), pages 428-435.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:27:y:2006:i:2:p:413-425. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.