IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v27y2006i1p249-257.html
   My bibliography  Save this article

Chaos control in duffing system

Author

Listed:
  • Wang, Ruiqi
  • Deng, Jin
  • Jing, Zhujun

Abstract

Analytical and numerical results concerning the inhibition of chaos in Duffing’s equation with two weak forcing excitations are presented. We theoretically give parameter-space regions by using Melnikov’s function, where chaotic states can be suppressed. The intervals of initial phase difference between the two excitations for which chaotic dynamics can be eliminated are given. Meanwhile, the influence of the phase difference on Lyapunov exponents for different frequencies is investigated. Numerical simulation results show the consistence with the theoretical analysis and the chaotic motions can be controlled to period-motions by adjusting parameter of suppressing excitation.

Suggested Citation

  • Wang, Ruiqi & Deng, Jin & Jing, Zhujun, 2006. "Chaos control in duffing system," Chaos, Solitons & Fractals, Elsevier, vol. 27(1), pages 249-257.
  • Handle: RePEc:eee:chsofr:v:27:y:2006:i:1:p:249-257
    DOI: 10.1016/j.chaos.2005.03.038
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077905003255
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2005.03.038?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. M. Mahmoud, Gamal & A. Mohamed, Ahmed & A. Aly, Shaban, 2001. "Strange attractors and chaos control in periodically forced complex Duffing's oscillators," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 292(1), pages 193-206.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yang, Jianping & Jing, Zhujun, 2009. "Control of chaos in a three-well duffing system," Chaos, Solitons & Fractals, Elsevier, vol. 41(3), pages 1311-1328.
    2. Panchev, S. & Spassova, T. & Vitanov, N.K., 2007. "Analytical and numerical investigation of two families of Lorenz-like dynamical systems," Chaos, Solitons & Fractals, Elsevier, vol. 33(5), pages 1658-1671.
    3. Assali, El Abed, 2021. "Predefined-time synchronization of chaotic systems with different dimensions and applications," Chaos, Solitons & Fractals, Elsevier, vol. 147(C).
    4. Huang, Pengfei & Chai, Yi & Chen, Xiaolong, 2022. "Multiple dynamics analysis of Lorenz-family systems and the application in signal detection," Chaos, Solitons & Fractals, Elsevier, vol. 156(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sachin Bhalekar, 2013. "Infinite-Scroll Attractor Generated by the Complex Pendulum Model," International Journal of Analysis, Hindawi, vol. 2013, pages 1-3, March.
    2. Li, Wei & Li, Jiaorui & Chen, Weisheng, 2012. "The reliability of a stochastically complex dynamical system," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(13), pages 3556-3565.
    3. Gao, Xin & Yu, Juebang, 2005. "Chaos in the fractional order periodically forced complex Duffing’s oscillators," Chaos, Solitons & Fractals, Elsevier, vol. 24(4), pages 1097-1104.
    4. Li, Wei & Xu, Wei & Zhao, Junfeng & Wu, Haibo, 2007. "The study on stationary solution of a stochastically complex dynamical system," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 385(2), pages 465-472.
    5. Mahmoud, Gamal M. & Mahmoud, Emad E. & Farghaly, Ahmed A. & Aly, Shaban A., 2009. "Chaotic synchronization of two complex nonlinear oscillators," Chaos, Solitons & Fractals, Elsevier, vol. 42(5), pages 2858-2864.
    6. Zhang, Jian-Gang & Li, Xian-Feng & Chu, Yan-Dong & Yu, Jian-Ning & Chang, Ying-Xiang, 2009. "Hopf bifurcations, Lyapunov exponents and control of chaos for a class of centrifugal flywheel governor system," Chaos, Solitons & Fractals, Elsevier, vol. 39(5), pages 2150-2168.
    7. Xu, Yong & Xu, Wei & Mahmoud, Gamal M., 2008. "On a complex Duffing system with random excitation," Chaos, Solitons & Fractals, Elsevier, vol. 35(1), pages 126-132.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:27:y:2006:i:1:p:249-257. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.