IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v26y2005i5p1391-1398.html
   My bibliography  Save this article

New stability conditions for neural networks with constant and variable delays

Author

Listed:
  • Zhang, Qiang
  • Wei, Xiaopeng
  • Xu, Jin

Abstract

In this paper, by utilizing Lyapunov functional method, we analyze global asymptotic stability of neural networks with constant delays. A new sufficient condition ensuring global asymptotic stability of the unique equilibrium point of delayed neural networks is obtained. Furthermore, based on the method of delay differential inequality, the conditions checking global exponential stability of the equilibrium point of neural networks with variable delays are given. The results extend and improve the earlier publications.

Suggested Citation

  • Zhang, Qiang & Wei, Xiaopeng & Xu, Jin, 2005. "New stability conditions for neural networks with constant and variable delays," Chaos, Solitons & Fractals, Elsevier, vol. 26(5), pages 1391-1398.
  • Handle: RePEc:eee:chsofr:v:26:y:2005:i:5:p:1391-1398
    DOI: 10.1016/j.chaos.2005.04.008
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077905002961
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2005.04.008?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wu, Wei & Cui, Bao Tong & Huang, Min, 2007. "Global asymptotic stability of Cohen–Grossberg neural networks with constant and variable delays," Chaos, Solitons & Fractals, Elsevier, vol. 33(4), pages 1355-1361.
    2. Zhang, Qiang & Wei, Xiaopeng & Xu, Jin, 2008. "Delay-dependent exponential stability criteria for non-autonomous cellular neural networks with time-varying delays," Chaos, Solitons & Fractals, Elsevier, vol. 36(4), pages 985-990.
    3. Peng, Dezhong & Yi, Zhang, 2008. "Global convergence of an adaptive minor component extraction algorithm," Chaos, Solitons & Fractals, Elsevier, vol. 35(3), pages 550-561.
    4. Song, Qiankun, 2008. "Novel criteria for global exponential periodicity and stability of recurrent neural networks with time-varying delays," Chaos, Solitons & Fractals, Elsevier, vol. 36(3), pages 720-728.
    5. Peng, Dezhong & Xiang, Yong & Yi, Zhang, 2009. "A new adaptive blind channel identification algorithm," Chaos, Solitons & Fractals, Elsevier, vol. 41(1), pages 354-359.
    6. Huang, Lihong & Guo, Zhenyuan, 2009. "Global convergence of periodic solution of neural networks with discontinuous activation functions," Chaos, Solitons & Fractals, Elsevier, vol. 42(4), pages 2351-2356.
    7. Wu, Wei & Cui, Bao Tong & Huang, Min, 2007. "Global asymptotic stability of delayed Cohen–Grossberg neural networks," Chaos, Solitons & Fractals, Elsevier, vol. 34(3), pages 872-877.
    8. Mak, K.L. & Peng, J.G. & Xu, Z.B. & Yiu, K.F.C., 2007. "A new stability criterion for discrete-time neural networks: Nonlinear spectral radius," Chaos, Solitons & Fractals, Elsevier, vol. 31(2), pages 424-436.
    9. Zhang, Qiang & Wei, Xiaopeng & Xu, Jin, 2009. "Global exponential stability for nonautonomous cellular neural networks with unbounded delays," Chaos, Solitons & Fractals, Elsevier, vol. 39(3), pages 1144-1151.
    10. Lan, Heng-you & Cui, Yi-Shun, 2009. "A neural network method for solving a system of linear variational inequalities," Chaos, Solitons & Fractals, Elsevier, vol. 41(3), pages 1245-1252.
    11. Dong, Ying & Sun, Chengjun, 2009. "Global existence of periodic solutions in a special neural network model with two delays," Chaos, Solitons & Fractals, Elsevier, vol. 39(5), pages 2249-2257.
    12. Zhang, Qiang & Xu, Xiaopeng Wei Jin, 2007. "Delay-dependent global stability results for delayed Hopfield neural networks," Chaos, Solitons & Fractals, Elsevier, vol. 34(2), pages 662-668.
    13. Gui, Zhanji & Ge, Weigao, 2007. "Periodic solutions of nonautonomous cellular neural networks with impulses," Chaos, Solitons & Fractals, Elsevier, vol. 32(5), pages 1760-1771.
    14. Zhang, Qiang & Wei, Xiaopeng & Xu, Jin, 2009. "Exponential stability for nonautonomous neural networks with variable delays," Chaos, Solitons & Fractals, Elsevier, vol. 39(3), pages 1152-1157.
    15. Gau, R.S. & Lien, C.H. & Hsieh, J.G., 2007. "Global exponential stability for uncertain cellular neural networks with multiple time-varying delays via LMI approach," Chaos, Solitons & Fractals, Elsevier, vol. 32(4), pages 1258-1267.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:26:y:2005:i:5:p:1391-1398. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.