IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v26y2005i2p379-392.html
   My bibliography  Save this article

Controlling the chaos using fuzzy estimation of OGY and Pyragas controllers

Author

Listed:
  • Alasty, Aria
  • Salarieh, Hassan

Abstract

This paper illustrates the control of chaos using a fuzzy estimating system based on batch training and recursive least square methods for a continuous time dynamic system. The fuzzy estimator system is trained on both Ott–Geobogi–Yorke (OGY) control algorithm and Pyragas’s delayed feedback control algorithm. The system, considered as a case study, is a Bonhoeffer–van der Pol (BVP) oscillator. It is found that the implemented fuzzy control system constructed on OGY algorithm results in smaller control transient response than that of the OGY control algorithm itself. The transient response of Pyragas fuzzy control does not show a significant improvement in compare to the Pyragas control itself. In general the proposed control techniques show very effective low cost energy behavior in chaos control in compare to conventional non-linear control methods. Also the robustness of controlled system against random disturbances increases when the fuzzy estimation of OGY or Pyragas controller is used as a chaos controller.

Suggested Citation

  • Alasty, Aria & Salarieh, Hassan, 2005. "Controlling the chaos using fuzzy estimation of OGY and Pyragas controllers," Chaos, Solitons & Fractals, Elsevier, vol. 26(2), pages 379-392.
  • Handle: RePEc:eee:chsofr:v:26:y:2005:i:2:p:379-392
    DOI: 10.1016/j.chaos.2004.12.034
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077905000718
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2004.12.034?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Feng, Yuhu & Hu, Liangjian, 2006. "On the quasi-controllability of continuous-time dynamic fuzzy control systems," Chaos, Solitons & Fractals, Elsevier, vol. 30(1), pages 177-188.
    2. dos Santos Coelho, Leandro & Coelho, Antonio Augusto Rodrigues, 2009. "Model-free adaptive control optimization using a chaotic particle swarm approach," Chaos, Solitons & Fractals, Elsevier, vol. 41(4), pages 2001-2009.
    3. Yeh, Jiin-Po, 2007. "Identifying chaotic systems using a fuzzy model coupled with a linear plant," Chaos, Solitons & Fractals, Elsevier, vol. 32(3), pages 1178-1187.
    4. Wang, Jiang & Si, Wenjie & Li, Huiyan, 2009. "Robust ISS-satisficing variable universe indirect fuzzy control for chaotic systems," Chaos, Solitons & Fractals, Elsevier, vol. 39(1), pages 28-38.
    5. Salarieh, Hassan & Alasty, Aria, 2009. "Chaos control in uncertain dynamical systems using nonlinear delayed feedback," Chaos, Solitons & Fractals, Elsevier, vol. 41(1), pages 67-71.
    6. Salarieh, Hassan & Shahrokhi, Mohammad, 2007. "Indirect adaptive control of discrete chaotic systems," Chaos, Solitons & Fractals, Elsevier, vol. 34(4), pages 1188-1201.
    7. Layeghi, Hamed & Arjmand, Mehdi Tabe & Salarieh, Hassan & Alasty, Aria, 2008. "Stabilizing periodic orbits of chaotic systems using fuzzy adaptive sliding mode control," Chaos, Solitons & Fractals, Elsevier, vol. 37(4), pages 1125-1135.
    8. Salarieh, Hassan & Alasty, Aria, 2008. "Adaptive control of chaotic systems with stochastic time varying unknown parameters," Chaos, Solitons & Fractals, Elsevier, vol. 38(1), pages 168-177.
    9. Alasty, Aria & Salarieh, Hassan, 2007. "Nonlinear feedback control of chaotic pendulum in presence of saturation effect," Chaos, Solitons & Fractals, Elsevier, vol. 31(2), pages 292-304.
    10. Bonakdar, Mohammad & Samadi, Mostafa & Salarieh, Hassan & Alasty, Aria, 2008. "Stabilizing periodic orbits of chaotic systems using fuzzy control of Poincaré map," Chaos, Solitons & Fractals, Elsevier, vol. 36(3), pages 682-693.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:26:y:2005:i:2:p:379-392. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.