IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v24y2005i5p1287-1297.html
   My bibliography  Save this article

Symmetry breaking, bifurcations, periodicity and chaos in the Euler method for a class of delay differential equations

Author

Listed:
  • Peng, Mingshu

Abstract

A discrete model is proposed to explore the rich dynamics of nonlinear delayed systems under Euler discretization, such as multiple steady states, multiple bifurcations, complex periodic oscillations, and chaos.

Suggested Citation

  • Peng, Mingshu, 2005. "Symmetry breaking, bifurcations, periodicity and chaos in the Euler method for a class of delay differential equations," Chaos, Solitons & Fractals, Elsevier, vol. 24(5), pages 1287-1297.
  • Handle: RePEc:eee:chsofr:v:24:y:2005:i:5:p:1287-1297
    DOI: 10.1016/j.chaos.2004.09.049
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077904006216
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2004.09.049?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Peng, Mingshu & Yuan, Yuan, 2008. "Complex dynamics in discrete delayed models with D4 symmetry," Chaos, Solitons & Fractals, Elsevier, vol. 37(2), pages 393-408.
    2. Attili, Basem S., 2009. "A direct method for the numerical computation of bifurcation points underlying symmetries," Chaos, Solitons & Fractals, Elsevier, vol. 40(3), pages 1545-1551.
    3. Morel, C. & Vlad, R. & Morel, J.-Y. & Petreus, D., 2011. "Generating chaotic attractors on a surface," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 81(11), pages 2549-2563.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:24:y:2005:i:5:p:1287-1297. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.